Abstract:
A computer includes a processor and a memory, the memory storing instructions executable by the processor to identify an initial lateral distance and an initial longitudinal distance of a host vehicle in a turn at an initiation of the turn, predict a heading angle of the host vehicle at a specified time after the initiation of the turn, predict a final lateral distance and a final longitudinal distance between the host vehicle and a target at the specified time based on the identified lateral distance, the identified longitudinal position, and the predicted heading angle, determine a lateral offset at a longitudinal time to collision based on the final lateral distance and the final longitudinal distance, and actuate a brake of the host vehicle according to a threat assessment based on the lateral offset.
Abstract:
Methods and systems for adjusting vehicle operation in response to vehicle weight are described. In one example, an adaptive driver demand correction is adjusted in response to vehicle weight. The methods and systems may provide for more consistent powertrain response and lower vehicle emissions at lower vehicle weights.
Abstract:
Example systems and methods for vehicle mode scheduling with learned user preferences are disclosed. The example disclosed method includes monitoring vehicle data when a vehicle changes from a first mode to a second mode. The example method also includes analyzing the vehicle data to identify a preference for the second mode during a driving context. Additionally, the example method includes generating a recommendation on whether to switch to the second mode while traversing a route based on the vehicle data, and the driving context, and presenting the recommendation to the driver.
Abstract:
A curve length, a curve size, and a curve heading angle change of a roadway being traveled by a vehicle are determined. Each of the curve length, the curve size, and the curve heading angle are compared with one or more threshold values to obtain a driving mode request.
Abstract:
A system includes a processor configured to receive a vehicle location and to access driver-specific driving-mode-change data for the vehicle location. The processor is also configured to determine, based on the accessed data, if a vehicle driving-mode-change has previously occurred at the vehicle location and context a sufficient number of times to cross a predefined threshold and, if so, to automatically change a vehicle driving-mode to the driving-mode associated with the previous driving-mode-change.
Abstract:
Methods and systems are provided for adjusting an engine output delivered in response to an operator pedal actuation based at least on a grade of vehicle travel. During uphill travel, in the presence of headwinds, and/or in the presence of a vehicle payload, the output may be increased while during downhill travel or in the presence of tailwinds, the output may be decreased. In this way, driver fatigue during travel over varying elevations, varying ambient conditions, and varying loads can be reduced.
Abstract:
A rule-based vehicle cruise-control system includes a computer in a vehicle, the computer including a processor and a memory, and the computer is configured to control a vehicle speed within a first speed threshold according to a set point inputted to the cruise control system. The computer is configured to determine a current grade value is within a first grade threshold and adjust the set point to control the vehicle speed within a second speed threshold outside the first speed threshold. The computer is further configured to determine the current grade value is within a second grade threshold and adjust the set point to recover the vehicle speed to within the first speed threshold.
Abstract:
Methods and systems are provided for adjusting an engine output delivered in response to an operator pedal actuation based at least on a grade of vehicle travel. During uphill travel, in the presence of headwinds, and/or in the presence of a vehicle payload, the output may be increased while during downhill travel or in the presence of tailwinds, the output may be decreased. In this way, driver fatigue during travel over varying elevations, varying ambient conditions, and varying loads can be reduced.
Abstract:
Methods and systems for adjusting vehicle operation in response to vehicle weight are described. In one example, an adaptive driver demand correction is adjusted in response to vehicle weight. The methods and systems may provide for more consistent powertrain response and lower vehicle emissions at lower vehicle weights.
Abstract:
An object exterior to a vehicle can be detected, and an augmented image of the detected object can be output to a vehicle display device, wherein at least one of dimensions and a motion of the augmented image is adjusted based on an environmental condition and physical attribute of the detected object including at least one of a speed, an acceleration, a location, and a direction of the detected object.