Abstract:
The number of lenses within an objective lens for endoscopes is only three. The objective lens for endoscopes includes, in order from the object side, a first lens which is a single lens having a negative refractive power and a concave surface toward the object side, an aperture stop, and a cemented lens. The cemented lens is formed by cementing one positive lens and one negative lens together. Conditional formulae related to the distance from the surface toward the object side of the first lens to the aperture stop and the Abbe's numbers of the positive lens and the negative lens that constitute the cemented lens are satisfied.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a first reduction unit, based on a detection result of the detection unit, influence of variation of the optical axis of the image formation optical system, a second reduction unit that is disposed in a different part from a common optical path and reduces variation of the optical axis of the directional light with respect to the subject based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
To provide a projection lens that is compact, lightweight, low-cost, and readily portable, a first lens having a positive power and at least one surface that is an aspheric surface; a second lens having a negative power and having a concave surface on the magnification side; a third lens having a positive power and having a convex surface on the reduction side; and a fourth lens having a positive power are arranged in order from the magnification side. In addition to arranging the lenses telecentrically on the reduction side, the following formulas are satisfied simultaneously, and images formed on the conjugation surface on the reduction side are enlarged and projected on the conjugation surface on the magnification side: formula (A) 0.8
Abstract:
An endoscope objective lens substantially consists of four lens groups consisting of, in order from the object side, a negative first lens group, a positive second lens group, a negative third lens group and a positive fourth lens group. During focusing from the farthest object to the nearest object, the first lens group is fixed, and the second lens group and the third lens group are moved along the optical axis. The third lens group includes a cemented lens that is formed by a positive lens and a negative lens cemented together in this order from the object side, and the cemented surface of the cemented lens is oriented such that the concave surface faces the object side.
Abstract:
The objective lens for an endoscope includes a stop, at least one lens which is disposed closer to an object side than the stop and of which an image-side lens surface is a concave surface, and at least one set of cemented lenses that is disposed closer to an image side than the stop; focusing on an object positioned at a nearest point from an object positioned at a farthest point is performed by movement of some lenses of an entire system along an optical axis; the objective lens for an endoscope has a total angle of view of 120° or more in a state where focusing on the object positioned at the farthest point is performed and in a state where focusing on the object positioned at the nearest point is performed; and the objective lens for an endoscope satisfies predetermined conditional expressions.
Abstract:
A projection display device includes an imaging element, a light source, a light valve that modulates light from the light source and emits modulated light, and an imaging optical system. The imaging optical system includes a first optical system that is used in common in projection and imaging, a second optical system that is used only in projection, a third optical system that is used only in imaging, and a separation member that separates an optical path from the second optical system toward the first optical system from an optical path from the first optical system toward the third optical system. The third optical system includes a first light shielding member that is arranged in the vicinity of a stop position of the third optical system and shields a part of a luminous flux.
Abstract:
There is provided a head-up display device that reflects and enlarges an image, which is displayed on an image display element, by a curved mirror, allows an observer to visually recognize the image as a virtual image, can change a virtual image display position, and is small. A head-up display device, which reflects and enlarges a displayed primary display image by a curved mirror and allows an observer to visually recognize the primary display image as a virtual image, includes a virtual-image-position change portion of changing a distance between the observer and the virtual image and a display-size change portion of changing the display size of the primary display image, and is adapted to satisfy the following conditional expression (1). 2.5
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a common reduction unit that reduces influence of variation of an optical axis of an image formation optical system, and reduces variation of an optical axis of the directional light, an auxiliary reduction unit that auxiliarily reduces at least one of influence of variation of the optical axis of the image formation optical system or variation of the optical axis of the directional light, and a control unit that, in a case of operating the common reduction unit and the auxiliary reduction unit at the same time, controls the common reduction unit and the auxiliary reduction unit to reduce variation of an irradiation position of the directional light in a subject image received as light by a light receiving section.
Abstract:
A distance measurement device includes a detection unit, an optical path forming unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of the optical axis of the image formation optical system, a second reduction unit that is disposed in a different part from the common optical path and reduces variation of the optical axis of the directional light based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.
Abstract:
A distance measurement device includes an emission unit, a detection unit, a first reduction unit that reduces, based on a detection result of the detection unit, influence of variation of an optical axis of the image formation optical system on a subject image received as light by a light receiving section, a second reduction unit that reduces variation of an optical axis of the directional light with respect to the subject based on the detection result of the detection unit, and a control unit that, in the case of operating the first reduction unit and the second reduction unit at the same time, controls the first reduction unit and the second reduction unit to reduce variation of an irradiation position of the directional light in the subject image received as light by the light receiving section.