Abstract:
A phase difference film is formed by using a liquid crystal compound and that indicates an Nz factor of more than 0 and less than 1, an optical film with same, and a display device. The phase difference film is formed by using a composition including a polymerizable liquid crystal compound having a mesogen group, where an order parameter of the mesogen group in an in-plane slow axis direction of the phase difference film is set as Sx, an order parameter of the mesogen group in a direction orthogonal to the in-plane slow axis direction in a plane is set as Sy, and an order parameter of the mesogen group in a thickness direction of the phase difference film is set as Sz, in a case where the mesogen group has a rod or a disc shape, differing Expressions are satisfied.
Abstract:
A composite film includes at least one phase difference layer, a substrate, and an inorganic layer, in which the phase difference layer is a layer formed by curing a composition including a liquid crystal compound, the inorganic layer includes silicon nitride, a distance between the substrate and a surface of the composite film is 60 μm or less, with respect to each of the layers other than the substrate, a product E×t×1 of a modulus of elasticity E in unit of GPa, a thickness t in unit of μm, and a distance 1 from a surface of the substrate to a center of each of the layer in unit of μm satisfies Expression 1, and a total SUM(E×t×1) of E×t×1 of each of the layers other than the substrate satisfies Expression 2, 0.8≤E×t×1 (Expression 1), SUM(E×t×1)≤1500 (Expression 2); and the composite film.
Abstract:
Provided are a composition capable of forming an optically anisotropic film exhibiting a negative Nz factor, an optically anisotropic film, a circularly polarizing plate, a display device, a compound, and a method for producing a compound. The composition includes a non-coloring lyotropic liquid crystal compound represented by Formula (X) (Rx1-(Lx1-Lx2-Rx2)n)a−(Mb+)c.
Abstract:
To suppress a phenomenon where an optical axis of the optically anisotropic layer is tilted when the optically anisotropic layer is produced by using a liquid crystalline compound showing smectic phase as a materials showing a higher level of orderliness. An optically anisotropic layer wherein a polymerizable composition, containing one or more polymerizable rod-like liquid crystal compound showing a smectic phase, is fixed in a state of smectic phase, and a direction of maximum refractive index of the optically anisotropic layer is inclined at 10° or smaller to the surface of the optically anisotropic layer, a method for manufacturing the same, a laminate and a method for manufacturing the same, a polarizing plate, a liquid crystal display device, and an organic EL display device.
Abstract:
An optical film includes a liquid crystal layer derived from a smectic phase, wherein an Nz factor of the liquid crystal layer is from 0.2 to 0.8. A display device that includes the optical film, and a method of producing an optical film is also provided.
Abstract:
To suppress a phenomenon where an optical axis of the optically anisotropic layer is tilted when the optically anisotropic layer is produced by using a liquid crystalline compound showing smectic phase as a materials showing a higher level of orderliness. An optically anisotropic layer wherein a polymerizable composition, containing one or more polymerizable rod-like liquid crystal compound showing a smectic phase, is fixed in a state of smectic phase, and a direction of maximum refractive index of the optically anisotropic layer is inclined at 10° or smaller to the surface of the optically anisotropic layer, a method for manufacturing the same, a laminate and a method for manufacturing the same, a polarizing plate, a liquid crystal display device, and an organic EL display device.
Abstract:
There is provided a composition containing a discotic liquid crystal compound, a chiral agent, and a surfactant which can form a light reflecting layer formed by fixing a cholesteric liquid crystalline phase, which exhibits excellent durability under a hot and humid environment and excellent heat resistance, and has few alignment defects; a light reflecting film; a luminance-improving film; a backlight unit; and a liquid crystal display device.
Abstract:
An optical film includes a transparent film having a thickness of 10 to 150 μm and a first layer on a first surface of the transparent film. The first layer has an average in-plane refractive index that is highest of average refractive indices of the transparent film and a layer disposed on the first surface, and the average in-plane refractive index of the first layer is higher than average refractive indices of the transparent film and the layer other than the first layer disposed on the first surface by 0.02 or more, wherein the average in-plane refractive index of the first layer is higher than the average refractive index of the transparent film by 0.02 or more, provided that the layer disposed on the first surface is the first layer alone, and the first layer has an optical thickness D satisfying: 260×N−190−65 nm≦D≦260×N−190+65 nm (N is an integer of 6 to 12).
Abstract:
Provide is an optical film which includes an optically anisotropic layer having a high-definition alignment pattern, can be readily produced, and is utility. The optical film comprising: a transparent support; an alignment film subjected to a unidirectional alignment treatment; and an optically anisotropic layer formed of one kind of composition mainly containing liquid crystal having a polymerizable group, wherein the optically anisotropic layer is a patterned optically anisotropic layer having first retardation regions and second retardation regions alternately disposed in a plane, and the first retardation regions and the second retardation regions have in-plane slow axes orthogonal to each other.
Abstract:
An optically anisotropic film which is excellent in aligning properties, light resistance, and moisture-heat resistance. The optically anisotropic film contains a liquid crystal compound or a polymer, and an aggregate of organic compounds, in which the optically anisotropic film has no absorption in a visible light region, an average value of ratios of lengths of major axes of the aggregate to lengths of minor axes of the aggregate is 2.0 or more, and an average length of the minor axes of the aggregate is 10 nm or more.