Abstract:
A system includes power harvesting circuitry in combination with energy storage and conversion circuitry. The power harvesting circuitry may be configured to respond to energy generated by rotary machinery having at least condition being monitored by at least one component having at least one electronic circuit, and provide harvested power. The energy storage and conversion circuitry may be configured to respond to the harvested power provided from the power harvesting circuitry, and provide stored and converted power to the at least one component for monitoring the least one condition of the rotary machinery.
Abstract:
A pumping system featuring a pump, motor, a bearing assembly, integrated data acquisition system and combined programmable logic controller (PLC), data acquisition and modem. The pump couples to a pump shaft that responds to a pump shaft force to pump a liquid. The motor couples to the pump shaft, responds to VFD/VSD control signaling and provides the pump shaft force to drive the pump shaft. The bearing assembly includes a bearing with the pump shaft arranged therein and couples the pump and the motor. The variable frequency/speed drive (VFD/VSD) receives PLC control signaling and provides the VFD/VSD control signaling to drive the motor. The integrated data acquisition system responds to PLC data acquisition signaling, and provides integrated data acquisition system signaling containing information about an integrated set of pumping system parameters related to the pump, the bearing assembly, the motor and the VFD/VSD in the pump system. The combined programmable logic controller (PLC), data acquisition and modem provides the PLC data acquisition signaling and receive the integrated data acquisition signaling, provides PLC data acquisition modem signaling that exports performance data to the Internet to allow remote manual monitoring of the pump system, and provides the PLC control signaling to control the VFD/VSD and operate the pumping system as a controlled, closed loop system.
Abstract:
A valve includes a body having upstream and downstream ports to measure upstream and downstream pressures and configured on a common axis, and a ball arranged in the body to rotate re the common axis between open and closed positions to allow for fluid flow and no fluid flow. The ball has a calibrated member having a calibrated orifice to allow fluid flow and has a flow coefficient and upstream and downstream pressure taps located upstream and downstream of the calibrated orifice and in fluidic communication with the upstream and downstream ports to measure upstream and downstream pressures when in the open position and angled re the common axis, so a direct flow measurement of fluid flow is determined based on a measured pressure differential between upstream and downstream pressure taps re the flow coefficient of the calibrated orifice when in the open position.