Domain adaptation using pseudo-labelling and model certainty quantification for video data

    公开(公告)号:US12249119B2

    公开(公告)日:2025-03-11

    申请号:US17654019

    申请日:2022-03-08

    Abstract: Systems and method for domain adaptation using pseudo-labelling and model certainty quantification for video data are provided. The method includes obtaining a source data and a target data each comprising a plurality of frames for processing by a machine learning module. The method comprises testing the target data to identify if a minimum number of frames exhibit a frame confidence score based on the source data and identifying salient region within the target data and measuring a degree of spatial consistency of the salient region over time. The method comprises identifying class specific attention region within the target data and measuring a confidence score of class specific attention region within the target data and carrying out pseudo-labeling of the target data based on the source data and calculating a certainty metrics value based on the frame confidence score, the degree of spatial consistency of the salient region over time, the confidence score of class specific attention region within the frames of the target data and confidence score of the pseudo-labeling on the target data. The machine learning module is retrained till the certainty metrics value reaches peak and further retraining the machine learning module does not increase the certainty metrics value.

    Interpretable task-specific dimensionality reduction

    公开(公告)号:US12249023B2

    公开(公告)日:2025-03-11

    申请号:US18065964

    申请日:2022-12-14

    Abstract: Systems/techniques that facilitate interpretable task-specific dimensionality-reduction are provided. In various embodiments, a system can access a three-dimensional medical image. In various aspects, the system can generate, via execution of a first deep learning neural network, a voxel-wise weight map corresponding to the three-dimensional medical image and a set of projection vectors corresponding to the three-dimensional medical image. In various instances, the system can generate a set of two-dimensional projection images of the three-dimensional medical image, based on the voxel-wise weight map and the set of projection vectors. In various cases, the first deep learning neural network can be trained in a serial pipeline with a second deep learning neural network that is configured to perform an inferencing task on two-dimensional inputs. This can cause the set of two-dimensional projection images to be tailored to the inferencing task.

    EXPLAINABLE CONFIDENCE ESTIMATION FOR LANDMARK LOCALIZATION

    公开(公告)号:US20250045951A1

    公开(公告)日:2025-02-06

    申请号:US18362224

    申请日:2023-07-31

    Abstract: Systems/techniques that facilitate explainable confidence estimation for landmark localization are provided. In various embodiments, a system can access a three-dimensional voxel array captured by a medical imaging scanner and can localize, via execution of a first deep learning neural network, a set of anatomical landmarks depicted in the three-dimensional voxel array. In various aspects, the system can generate a multi-tiered confidence score collection based on the set of anatomical landmarks and based on a training dataset on which the first deep learning neural network was trained. In various instances, the system can, in response to one or more confidence scores from the multi-tiered confidence score collection failing to satisfy a threshold, generate, via execution of a second deep learning neural network, a classification label that indicates an explanatory factor for why the one or more confidence scores failed to satisfy the threshold.

    DATA CANDIDATE QUERYING VIA EMBEDDINGS FOR DEEP LEARNING REFINEMENT

    公开(公告)号:US20240379226A1

    公开(公告)日:2024-11-14

    申请号:US18313775

    申请日:2023-05-08

    Abstract: Systems/techniques that facilitate data candidate querying via embeddings for deep learning refinement are provided. In various embodiments, a system can access a test data candidate provided by a client, generate, via a first deep learning neural network, an inferencing output based on the test data candidate, and access feedback indicating whether the client accepts or rejects the inferencing output. In various aspects, the system can generate, via at least one second deep learning neural network, at least one embedding based on the test data candidate. In various instances, the system can, in response to the feedback indicating that the client rejects the inferencing output, identify, in a candidate-embedding dataset, one or more data candidates whose embeddings are within a threshold level of similarity to the at least one embedding and can retrain the first deep learning neural network based on the one or more data candidates.

    Self-supervised representation learning paradigm for medical images

    公开(公告)号:US12211202B2

    公开(公告)日:2025-01-28

    申请号:US17500366

    申请日:2021-10-13

    Abstract: Techniques are described for learning feature representations of medical images using a self-supervised learning paradigm and employing those feature representations for automating downstream tasks such as image retrieval, image classification and other medical image processing tasks. According to an embodiment, computer-implemented method comprises generating alternate view images for respective medical images included in set of training images using one or more image augmentation techniques or one or more image selection techniques tailored based on domain knowledge associated with the respective medical images. The method further comprises training a transformer network to learn reference feature representations for the respective medical images using their alternate view images and a self-supervised training process. The method further comprises storing the reference feature representations in an indexed data structure with information identifying the respective medical images that correspond to the reference feature representations.

    ULTRASOUND IMAGING SYSTEM AND METHOD FOR SEGMENTING AN OBJECT FROM A VOLUMETRIC ULTRASOUND DATASET

    公开(公告)号:US20240285256A1

    公开(公告)日:2024-08-29

    申请号:US18175307

    申请日:2023-02-27

    CPC classification number: A61B8/483 A61B8/466 G06T2207/20084

    Abstract: Various methods and ultrasound imaging systems are provided for segmenting an object. In one example, a method includes accessing a volumetric ultrasound dataset, receiving an identification of a seed point for an object in an image generated based on the volumetric ultrasound dataset, and implementing a two-dimensional segmentation model on a first plurality of parallel slices based on the seed point to generate a first plurality of segmented regions. The method includes implementing the two-dimensional segmentation model on a second plurality of parallel slices based on the seed point to generate a second plurality of segmented regions. The method includes generating a detected region by accumulating the first plurality of segmented regions and the second plurality of segmented regions. The method includes implementing a shape completion model to generate a three-dimensional shape model for the object, and displaying rendering of the object based on the three-dimensional shape model.

    INTERPRETABLE TASK-SPECIFIC DIMENSIONALITY REDUCTION

    公开(公告)号:US20240203039A1

    公开(公告)日:2024-06-20

    申请号:US18065964

    申请日:2022-12-14

    CPC classification number: G06T15/20 G06T15/08 G06V10/82

    Abstract: Systems/techniques that facilitate interpretable task-specific dimensionality-reduction are provided. In various embodiments, a system can access a three-dimensional medical image. In various aspects, the system can generate, via execution of a first deep learning neural network, a voxel-wise weight map corresponding to the three-dimensional medical image and a set of projection vectors corresponding to the three-dimensional medical image. In various instances, the system can generate a set of two-dimensional projection images of the three-dimensional medical image, based on the voxel-wise weight map and the set of projection vectors. In various cases, the first deep learning neural network can be trained in a serial pipeline with a second deep learning neural network that is configured to perform an inferencing task on two-dimensional inputs. This can cause the set of two-dimensional projection images to be tailored to the inferencing task.

Patent Agency Ranking