-
公开(公告)号:US20210080531A1
公开(公告)日:2021-03-18
申请号:US16573955
申请日:2019-09-17
Applicant: GE Precision Healthcare LLC
Inventor: Dawei Gui , Dattesh Dayanand Shanbhag , Chitresh Bhushan , André de Almeida Maximo
Abstract: Methods and systems are provided for determining scan settings for a localizer scan based on a magnetic resonance (MR) calibration image. In one example, a method for magnetic resonance imaging (MRI) includes acquiring an MR calibration image of an imaging subject, mapping, by a trained deep neural network, the MR calibration image to a corresponding anatomical region of interest (ROI) attribute map for an anatomical ROI of the imaging subject, adjusting one or more localizer scan parameters based on the anatomical ROI attribute map, and acquiring one or more localizer images of the anatomical ROI according to the one or more localizer scan parameters.
-
12.
公开(公告)号:US20240280654A1
公开(公告)日:2024-08-22
申请号:US18111147
申请日:2023-02-17
Applicant: GE Precision Healthcare LLC
Inventor: Kavitha Manickam , Dattesh Dayanand Shanbhag , Dawei Gui , Chitresh Bhushan
CPC classification number: G01R33/288 , G01R33/546
Abstract: A computer-implemented method for performing a scan of a subject utilizing a magnetic resonance imaging (MRI) system includes initiating, via a processor, a prescan of the subject by an MRI scanner of the MRI system without a priori knowledge as to whether the subject has a metal implant. The computer-implemented method also includes executing, via the processor, a metal detection algorithm during a prescan entry point of the prescan to detect whether the metal implant is present in the subject. The computer-implemented method further includes determining, via the processor, to proceed with a calibration scan and the scan utilizing predetermined scan parameters when no metal implant is detected in the subject. The computer-implemented method even further includes switching, via the processor, into a metal implant scan mode when one or more metal implants are detected in the subject.
-
公开(公告)号:US12048521B2
公开(公告)日:2024-07-30
申请号:US17973855
申请日:2022-10-26
Applicant: GE Precision Healthcare LLC
Inventor: Dattesh Dayanand Shanbhag , Chitresh Bhushan , Deepa Anand , Kavitha Manickam , Dawei Gui , Radhika Madhavan
CPC classification number: A61B5/055 , G01R33/20 , G01R33/5608
Abstract: A method for generating an image of a subject with a magnetic resonance imaging (MRI) system is presented. The method includes first performing a localizer scan of the subject to acquire localizer scan data. A machine learning (ML) module is then used to detect the presence of metal regions in the localizer scan data based on magnitude and phase information of the localizer scan data. Based on the detected metal regions in the localizer scan data, the MRI workflow is adjusted for diagnostic scan of the subject. The image of the subject is then generated using the adjusted workflow.
-
公开(公告)号:US11506739B2
公开(公告)日:2022-11-22
申请号:US16573955
申请日:2019-09-17
Applicant: GE Precision Healthcare LLC
Inventor: Dawei Gui , Dattesh Dayanand Shanbhag , Chitresh Bhushan , André de Almeida Maximo
Abstract: Methods and systems are provided for determining scan settings for a localizer scan based on a magnetic resonance (MR) calibration image. In one example, a method for magnetic resonance imaging (MRI) includes acquiring an MR calibration image of an imaging subject, mapping, by a trained deep neural network, the MR calibration image to a corresponding anatomical region of interest (ROI) attribute map for an anatomical ROI of the imaging subject, adjusting one or more localizer scan parameters based on the anatomical ROI attribute map, and acquiring one or more localizer images of the anatomical ROI according to the one or more localizer scan parameters.
-
公开(公告)号:US20210018583A1
公开(公告)日:2021-01-21
申请号:US16514906
申请日:2019-07-17
Applicant: GE Precision Healthcare LLC
Inventor: Dawei Gui , Xiaoli Zhao , Ling Sun , Haonan Wang , Wei Sun
Abstract: Methods and systems are provided for predicting B1+ field maps from magnetic resonance calibration images using deep neural networks. In an exemplary embodiment a method for magnetic resonance imaging comprises, acquiring a magnetic resonance (MR) calibration image of an anatomical region, mapping the MR calibration image to a transmit field map (B1+ field map) with a trained deep neural network, acquiring a diagnostic MR image of the anatomical region, and correcting inhomogeneities of a transmit field in the diagnostic MR image with the B1+ field map. Further, methods and systems are provided for collecting and processing training data, as well as utilizing the training data to train a deep learning network to predict B1+ field maps from MR calibration images.
-
公开(公告)号:US10884086B1
公开(公告)日:2021-01-05
申请号:US16525161
申请日:2019-07-29
Applicant: GE Precision Healthcare LLC
Inventor: Ali Ersoz , Ajeetkumar Gaddipati , Dawei Gui , Valentina Taviani , Zachary W Slavens
IPC: G01R33/48 , G01R33/561
Abstract: Systems and methods for accelerated multi-contrast PROPELLER are disclosed herein. K-space is sampled in a rotating fashion using a plurality of radially directed blades around a center of k-space. A first subset of blades is acquired for a first contrast and a second subset of blades is acquired for a second contrasts. The first subset of blades is combined with high frequency components of the second subset of blades to produce an image of the first contrast. And the second subset of blades are combined with high frequency components of the first subset of blades to produce an image of the second contrast.
-
-
-
-
-