Abstract:
A ceramic matrix composite (CMC) component and method of fabrication including a plurality of counterflow elongated functional features. The CMC component includes a plurality of longitudinally extending ceramic matrix composite plies forming a densified body and a plurality of elongated functional features formed therein the densified body. Each of the plurality of functional features is configured longitudinally extending and in alignment with the plurality of ceramic matrix composite plies. Each of the plurality of elongated functional features includes an inlet configured in cross-ply configuration. The plurality of elongated functional features are configured to provide a flow of fluid from a fluid source to an exterior of the ceramic matrix composite component. The plurality of functional features are configured in alternating flow configuration.
Abstract:
Turbine center frames are provided. For example, a turbine center frame comprises an annular outer case and an annular hub. The hub is defined radially inward of the outer case such that the outer case circumferentially surrounds the hub. The turbine center frame further comprises an annular fairing extending between the outer case and the hub, a ligament extending from the fairing to the outer case to connect the fairing to the outer case, a plurality of struts extending from the hub to the outer case, and a boss structure defined on an outer surface of the outer case. The outer case, hub, fairing, ligament, plurality of struts, and boss structure are integrally formed as a single monolithic component. For instance, the turbine center frame is additively manufactured as an integral structure, and methods for manufacturing turbine center frames also are provided.
Abstract:
A turbine shroud for turbine systems are disclosed. The shrouds may include a unitary body including a support portion coupled directly to a turbine casing of the turbine system, and forward hook(s) and aft hook(s) formed integral with the support portion. The unitary body may also include an intermediate portion formed integral with and extending from the support portion. The intermediate portion may include a non-linear segment extending from the support portion, and a forward segment formed integral with the non-linear segment. The forward segment of the intermediate portion may be positioned axially upstream of the forward hook(s). Additionally the unitary body may include a seal portion formed integral with the intermediate portion, opposite the support portion. The seal portion may include a forward end formed integral with the intermediate portion. The forward end may be positioned axially upstream of the forward hook(s).
Abstract:
The turbomachine includes a rotatable member defining an axis of rotation and an inner annular casing extending circumferentially over at least a portion of the rotatable member. The inner annular casing includes a radially outer surface. The turbomachine further includes an outer annular casing extending over at least a portion of the inner annular casing. The inner annular casing and the outer annular casing define a plurality of cavities therebetween. The clearance control system includes a manifold system including a plurality of conduits extending circumferentially about the inner annular casing and disposed within the cavities. The clearance control system also includes an impingement system extending circumferentially about the inner annular casing and disposed within the cavities. The conduits are configured to channel a flow of cooling fluid to the impingement system which is configured to channel the cooling fluid to the radially outer surface of the inner annular casing.
Abstract:
A method implemented using at least one processor includes receiving a plurality of measured operational parameters of a turbo machine having a rotor and a stator. The plurality of measured operational parameters includes a plurality of real-time operational parameters and a plurality of stored operational parameters. The method further includes generating a finite element model of the turbo machine and generating a plurality of snapshots based on the finite element model and the plurality of stored operational parameters. The method further includes generating a reduced order model based on the plurality of snapshots. The method also includes determining an estimated clearance between the rotor and the stator during operation of the turbo machine, based on the reduced order model and the plurality of real-time operational parameters.
Abstract:
Methods for manufacturing dual phase soft magnetic components include combining a plurality of soft ferromagnetic particles with a plurality of paramagnetic particles to form a component structure, wherein the plurality of soft ferromagnetic particles each comprise an electrically insulative coating, and, heat treating the component structure to consolidate the plurality of soft ferromagnetic particles with the plurality of paramagnetic particles.
Abstract:
Methods, apparatus, systems, and articles of manufacture to provide damping of an airfoil are disclosed. An example airfoil is disposed in a flow path, the airfoil including a shell defining an exterior surface of the airfoil and forming a cavity in an interior surface of the airfoil, and a lattice damper disposed in the cavity, the lattice damper to reduce vibrational loads exerted on the airfoil.
Abstract:
Methods, apparatus, systems, and articles of manufacture to provide damping of an airfoil are disclosed. An example airfoil is disposed in a flow path, the airfoil including a shell defining an exterior surface of the airfoil and forming a cavity in an interior surface of the airfoil, and a lattice damper disposed in the cavity, the lattice damper to reduce vibrational loads exerted on the airfoil.
Abstract:
An airfoil for a fan section of a turbine engine may include a fan blade or an outlet guide vane formed of a first material, and an edge guard disposed about an edge of the fan blade. The edge guard may include a matrix composite that has a toughness that is greater than a toughness of the first material. The airfoil may include a fan blade or an outlet guide vane. The first material of the airfoil may include a metal alloy and/or a matrix composite. A method of manufacturing an airfoil for a fan section of a turbine engine may include manufacturing an edge guard, attaching the edge guard to the airfoil.