Abstract:
A component includes an outer wall that includes an exterior surface, and at least one plenum defined interiorly to the outer wall and configured to receive a cooling fluid therein. The component also includes a coating system disposed on the exterior surface. The coating system has a thickness. The component further includes a plurality of adaptive cooling openings defined in the outer wall. Each of the adaptive cooling openings extends from a first end inflow communication with the at least one plenum, outward through the exterior surface and to a second end covered underneath at least a portion of the thickness of the coating system.
Abstract:
A hollow CMC article, a mandrel for forming the article and a method for forming the article are disclosed. The article includes a ply-wrap layer defining a cavity. The ply-wrap layer includes a first face, a second face, a root portion bridging the faces, and a plurality of CMC wrap plies. The root portion defines a terminus of the ply-wrap layer including a cross-sectional conformation consisting of a curve having a single turning point. Each of the plurality of CMC wrap plies are disposed along the first face, wrap over the root portion, and extend along the second face. The hollow article further includes a plurality of CMC lateral plies disposed along the faces.
Abstract:
A ceramic matrix composite (CMC) turbine blade includes an airfoil, a hub extending from the airfoil, and a shank extending from the hub. The airfoil includes a leading edge, a trailing edge, a pressure side, and a suction side. The shank includes a dovetail root having a dovetail path curved in a radial plane. In some embodiments, a leading shank length of the shank at the leading edge and a trailing shank length of the shank at the trailing edge are greater than an intermediate shank length at an intermediate location between the leading edge and the trailing edge. At least one of the airfoil, the hub, and the shank is formed from a CMC. A method of forming the CMC turbine blade includes forming the dovetail root to have a dovetail path curved in a radial plane.
Abstract:
A ceramic matrix composite (CMC) turbine blade assembly includes a rotor, a CMC turbine blade, and at least one dovetail sleeve. The rotor has a blade slot with at least one slot surface. The slot surface is at a slot angle. The CMC turbine blade is received in the blade slot. The CMC turbine blade includes a dovetail root having at least one root surface. The root surface is at a root angle. The root angle is at least 5 degrees greater than the slot angle. The dovetail sleeve is received in the blade slot of the rotor. The dovetail sleeve has at least one inner surface contacting at least one root surface and at least one outer surface contacting at least one slot surface to radially retain the CMC turbine blade in the blade slot. A dovetail sleeve and a method of mounting a CMC turbine blade are also disclosed.
Abstract:
A process of producing a ceramic matrix composite gas turbine component and a ceramic matrix composite gas turbine component are provided. The process includes modifying a surface of the ceramic matrix composite gas turbine component to produce a modified surface with a surface roughness of less than 6 micrometers. The modifying is selected from the group of techniques consisting of applying unreinforced matrix plies to the surface, vapor depositing silicon on the surface, honing the surface, applying braze paste to the surface, and combinations thereof. The component includes a modified surface including a surface roughness of less than 6 micrometers. The modified surface being selected from the group consisting of unreinforced matrix plies applied to a surface of the ceramic matrix composite gas turbine component, silicon vapor deposited on the surface, a honed surface, a braze paste applied to the surface, and combinations thereof.