Abstract:
A turbine component assembly is disclosed, including a first component, a second component, and a circumferentially oriented flat spring. The first component is arranged to be disposed adjacent to a hot gas path, and includes a ceramic matrix composite composition. The second component is adjacent to the first component and arranged to be disposed distal from the hot gas path across the first component. The circumferentially oriented flat spring is disposed on and directly contacting the second component and directly contacting and supporting the first component as a compliant contact interface between the first component and the second component. The circumferentially oriented flat spring provides a radial spring compliance between the first component and the second component.
Abstract:
An anti-rotation shroud dampening pin is disclosed including a shaft, an anti-rotation dampening tip at a first end of the shaft, and a cap at a second end of the shaft. The anti-rotation dampening tip includes a pin non-circular cross-section. A turbine shroud assembly is disclosed, including an inner shroud, an outer shroud, the anti-rotation shroud dampening pin, and a biasing apparatus. The inner shroud includes an anti-rotation depression having a depression non-circular cross-section. The outer shroud includes a channel extending from an aperture adjacent to the inner shroud. The anti-rotation shroud dampening pin is disposed within the channel and in contact with the inner shroud, and extends through the aperture into the anti-rotation depression. The biasing apparatus contacts the cap and provides a biasing force to the inner shroud through the anti-rotation dampening tip. The pin non-circular cross-section mates non-rotatably into the depression non-circular cross-section.
Abstract:
A turbine bucket assembly and turbine system are disclosed. The turbine bucket assembly includes a single-lobe joint having an integral platform, the joint having a first axial length; a non-segmented airfoil having a root section and a tip section integral with the root section, the tip section having a tip end with a second axial length, the second axial length being less than the first axial length; and a turbine wheel having a receptacle with a geometry corresponding to the single-lobe joint and being coupled to the single-lobe joint. The turbine wheel includes a turbine wheel material and the single-lobe joint and the non-segmented airfoil include a turbine bucket material, the turbine bucket material having a higher heat resistance and a lower thermal expansion than the turbine wheel material.
Abstract:
A CMC ply assembly is disclosed including at least one matrix ply interspersed amongst a plurality of CMC plies. Each of the plurality of CMC plies includes a first matrix and a plurality of ceramic fibers. The at least one matrix ply includes a second matrix and is essentially free of ceramic fibers. The plurality of CMC plies and the at least one matrix ply are arranged in an undensified ply stack having an article conformation. A CMC article is disclosed including a plurality of densified CMC plies and at least one densified matrix ply interspersed amongst the plurality of densified CMC plies. A method for forming the CMC article is disclosed including forming, carburizing, infusing a melt infiltration agent into, and densifying the CMC ply assembly. The melt infiltration agent infuses more completely through the at least one matrix ply than through the plurality of CMC plies.
Abstract:
A gas turbine seal assembly includes a gas turbine component and a gas turbine seal component contacting the gas turbine component to form a seal between the two components. The gas turbine seal component includes ceramic matrix composite plies bonded together to form the ceramic matrix composite component. A bond-inhibiting coating on a non-bonding portion of a first surface of one of the ceramic matrix composite plies prevents bonding between the non-bonding portion of the first surface and a second surface of a neighboring ceramic matrix composite ply. At least one bonding portion of the first surface lacking the bond-inhibiting coating is bonded to the second surface. A method of forming a ceramic matrix composite component includes selectively applying a bond-inhibiting coating to a non-bonding portion of a first surface of a ceramic matrix composite ply and bonding the ceramic matrix composite plies together.
Abstract:
Components are disclosed which include a CMC substrate having a first surface and a second surface. The first surface is in fluid communication with a compressed, dry fluid, and the second surface is in fluid communication with a wet fluid stream and includes a hermetic coating. The components further include at least one opening extending from the first surface through a portion of the CMC substrate, wherein, upon removal of a fragment of one or both of the hermetic coating and the CMC substrate, the at least one opening selectively permits a flow of the compressed, dry fluid to the second surface. In one embodiment, the component is a gas turbine component, the wet fluid stream is a hot combustion stream, the hermetic coating is an environmental barrier coating, and the flow reduces or eliminates volatilization of the CMC substrate. Methods for forming the components are also disclosed.
Abstract:
An apparatus having reduced wear and friction between CMC-to-metal attachment and interface of the apparatus, including a CMC component having a surface. The CMC component surface is configured for sliding contact with a surface of a metal component, the sliding contact resulting in formation of debris along the contacting surfaces. The surface of the CMC component has an engineered surface feature formed therein to substantially prevent an accumulation of debris along the contacting surfaces.
Abstract:
A ceramic matrix composite component, turbine system and fabrication process are disclosed. The ceramic matrix composite (CMC) component includes a CMC material, an environmental barrier coating (EBC) on the CMC material, and a hard wear coating applied over the EBC. The turbine system includes a rotatable CMC component having a hard wear coating, and a stationary turbine component, the stationary turbine component having an abradable coating arranged and disposed to be cut by the silicon carbide material. The fabrication process includes positioning the rotatable CMC a pre-determined distance from the stationary turbine component and rotating the rotatable CMC component. The hard wear coating on the rotatable CMC component cuts the abradable coating on the stationary turbine component.
Abstract:
A turbine component assembly is disclosed, including a first component, a second component, and a cantilever spring. The first component is arranged to be disposed adjacent to a hot gas path, and includes a ceramic matrix composite composition. The second component is adjacent to the first component and arranged to be disposed distal from the hot gas path across the first component. The cantilever spring is attached directly to the second component as a compliant contact interface between the first component and the second component. The cantilever spring provides a radial spring compliance between the first component and the second component. During operation, the cantilever spring directly contacts and supports the first component.
Abstract:
A turbine shroud assembly is disclosed including an inner shroud, an outer shroud, a shroud dampening pin, and a biasing apparatus. The inner shroud is adjacent to a hot gas path. The outer shroud is adjacent to the inner shroud and distal from the hot gas path, and includes a channel extending from an aperture adjacent to the inner shroud. The shroud dampening pin is within the channel and contacts the inner shroud, and includes a shaft, a contact surface, and a cap. The shaft is within the channel. The contact surface extends through the aperture in contact with the inner shroud. The cap is distal across the shaft from the contact surface. The biasing apparatus contacts the cap, is driven by a pressurized fluid, and provides a biasing force away from the outer shroud along the shroud dampening pin to the inner shroud through the contact surface.