Abstract:
A method and assembly for aligning airflow modifying elements on a rotor blade is disclosed. The airflow modifying assembly may be mounted onto a suction side surface or a pressure side surface of the rotor blade. Further, the airflow modifying assembly includes an alignment structure having a chord-wise extending face that may be fixed relative to the rotor blade at a predetermined position. The airflow modifying assembly further includes a first base having a root end, a tail end having an interconnecting profile, and a first plurality of airflow modifying elements. The root end is aligned with the chord-wise extending face such that the first base extends span-wise along the rotor blade. Additionally, the airflow modifying assembly includes at least one second base having a connector end with a complementary interconnecting profile and a plurality of airflow modifying elements, wherein the connector end is coupled to the tail end.
Abstract:
A rotor blade assembly for a wind turbine includes a rotor blade having a pressure side, a suction side, a leading edge, and a trailing edge. A vortex generator accessory is mounted to either of the suction side or pressure side and includes a base portion and a protrusion member extending upwardly from the base portion. An attachment layer connects the base portion to the suction or pressure side. The attachment layer has a lower shear modulus than the base portion to allow for shear slippage between the base portion and the underlying suction or pressure side.
Abstract:
Systems and methods for operating a power system having a doubly fed induction generator are provided. In example implementations, a power system can include a power converter. The power converter can include a line-side converter, a DC link, and a rotor-side converter. The rotor-side converter is configured to convert a DC power on the DC link to an AC signal for a rotor bus. The system can include a control system having one or more control devices. The one or more control devices are configured to operate the rotor-side converter in an overmodulation regime to provide the AC signal for the rotor bus
Abstract:
A rotor blade assembly for a wind turbine includes a rotor blade having a pressure side, a suction side, a leading edge, and a trailing edge. A vortex generator accessory is mounted to either of the suction side or pressure side and includes a base portion and a protrusion member extending upwardly from the base portion. An attachment layer connects the base portion to the suction or pressure side. The attachment layer has a lower shear modulus than the base portion to allow for shear slippage between the base portion and the underlying suction or pressure side.
Abstract:
A method for installing an add-on component to a surface of a wind turbine blade includes attaching an adhesive side of strips of a double-sided adhesive tape onto either the surface of the wind turbine blade or a surface of the add-on component, the tape strips having a release liner on an opposite exposed side thereof. The tape strips having an extension tail of the release liner that extends beyond an edge of the add-on component when the add-on component is placed and held at a desired position against the surface of the wind turbine blade. With the add-on component held at the desired position, the extension tail is pulled away at an angle such that that release liner is removed along the length of the tape strip while maintaining the add-on component against the blade surface to attach the exposed adhesive under the release liner to either the surface of the wind turbine blade or the surface of the add-on component.
Abstract:
A rigid template for aligning surface features on a rotor blade is disclosed. The rigid template is shaped to correspond to the surface of the rotor blade. Further, the rigid template includes a base end and a tail end opposite the base end. The base end is configured to connect to an alignment structure, the alignment structure being fixed relative to the rotor blade. The tail end includes at least one marker configured to locate at least one surface feature on the surface of the rotor blade.
Abstract:
Rotor blade assemblies for wind turbines are provided. A rotor blade assembly includes a rotor blade. In some embodiments, the rotor blade assembly further includes a surface feature configured on an exterior surface of the rotor blade, the surface feature having an exterior mounting surface. At least a portion of the exterior mounting surface has a contour in an uninstalled state that is different from a curvature of the exterior surface of the rotor blade at a mount location of the surface feature on the rotor blade. In other embodiments, the rotor blade assembly further includes a seal member surrounding at least a portion of a perimeter of the surface feature. The seal member contacts and provides a transition between the exterior surface and the surface feature.
Abstract:
Rotor blade assemblies for wind turbines are provided. A rotor blade assembly includes a rotor blade. In some embodiments, the rotor blade assembly further includes a surface feature configured on an exterior surface of the rotor blade, the surface feature having an exterior mounting surface. At least a portion of the exterior mounting surface has a contour in an uninstalled state that is different from a curvature of the exterior surface of the rotor blade at a mount location of the surface feature on the rotor blade. In other embodiments, the rotor blade assembly further includes a seal member surrounding at least a portion of a perimeter of the surface feature. The seal member contacts and provides a transition between the exterior surface and the surface feature.
Abstract:
A method for automatically updating data associated with a wind turbine based on component self-identification may generally include providing instructions for transmitting a polling signal to an identification sensor associated with a wind turbine component and, in response to the transmission of the polling signal, receiving current configuration data for the wind turbine component from the identification sensor. The method may also include comparing the current configuration data received from the identification sensor to last-known configuration data for the wind turbine component and automatically updating one or more parameter settings associated with operating the wind turbine based on any differences identified between the current configuration data and the last-known configuration data.
Abstract:
In one aspect, a rotor blade assembly for a wind turbine may generally include a rotor blade extending lengthwise between a root and a tip. The rotor blade may include a pressure side and a suction side extending between a leading edge and a trailing edge. Additionally, the rotor blade assembly may include a chord extender having an attachment portion coupled to at least of the pressure side or the suction side and an extension portion extending outwardly from the attachment portion beyond the trailing edge. The extension portion may extend chordwise between a first end disposed adjacent to the trailing edge and a second end disposed opposite the first end. The extension portion may include a surface defined between the first and second ends. The extension portion may further include at least one stiffening rib projecting outwardly from the surface.