Abstract:
A rigid template for aligning surface features on a rotor blade is disclosed. The rigid template is shaped to correspond to the surface of the rotor blade. Further, the rigid template includes a base end and a tail end opposite the base end. The base end is configured to connect to an alignment structure, the alignment structure being fixed relative to the rotor blade. The tail end includes at least one marker configured to locate at least one surface feature on the surface of the rotor blade.
Abstract:
Universal vortex generators for wind turbine rotor blades and methods of manufacturing same are disclosed. The vortex generator includes a base portion configured for attachment to at least one of a suction side surface or a pressure side surface of the rotor blade and at least one airflow modifying element extending from the base portion. In addition, the airflow modifying element includes one or more discontinuities configured therein so as to increase flexibility of the vortex generator.
Abstract:
A method and assembly for aligning airflow modifying elements on a rotor blade is disclosed. The airflow modifying assembly may be mounted onto a suction side surface or a pressure side surface of the rotor blade. Further, the airflow modifying assembly includes an alignment structure having a chord-wise extending face that may be fixed relative to the rotor blade at a predetermined position. The airflow modifying assembly further includes a first base having a root end, a tail end having an interconnecting profile, and a first plurality of airflow modifying elements. The root end is aligned with the chord-wise extending face such that the first base extends span-wise along the rotor blade. Additionally, the airflow modifying assembly includes at least one second base having a connector end with a complementary interconnecting profile and a plurality of airflow modifying elements, wherein the connector end is coupled to the tail end.
Abstract:
In one aspect, a rotor blade assembly for a wind turbine may generally include a rotor blade extending lengthwise between a root and a tip. The rotor blade may include a pressure side and a suction side extending between a leading edge and a trailing edge. Additionally, the rotor blade assembly may include a chord extender having an attachment portion coupled to at least of the pressure side or the suction side and an extension portion extending outwardly from the attachment portion beyond the trailing edge. The extension portion may extend chordwise between a first end disposed adjacent to the trailing edge and a second end disposed opposite the first end. The extension portion may include a surface defined between the first and second ends. The extension portion may further include at least one stiffening rib projecting outwardly from the surface.
Abstract:
A method and assembly for aligning airflow modifying elements on a rotor blade is disclosed. The airflow modifying assembly may be mounted onto a suction side surface or a pressure side surface of the rotor blade. Further, the airflow modifying assembly includes an alignment structure having a chord-wise extending face that may be fixed relative to the rotor blade at a predetermined position. The airflow modifying assembly further includes a first base having a root end, a tail end having an interconnecting profile, and a first plurality of airflow modifying elements. The root end is aligned with the chord-wise extending face such that the first base extends span-wise along the rotor blade. Additionally, the airflow modifying assembly includes at least one second base having a connector end with a complementary interconnecting profile and a plurality of airflow modifying elements, wherein the connector end is coupled to the tail end.
Abstract:
A rotor blade assembly for a wind turbine includes a rotor blade having a pressure side, a suction side, a leading edge, and a trailing edge. A vortex generator accessory is mounted to either of the suction side or pressure side and includes a base portion and a protrusion member extending upwardly from the base portion. An attachment layer connects the base portion to the suction or pressure side. The attachment layer has a lower shear modulus than the base portion to allow for shear slippage between the base portion and the underlying suction or pressure side.
Abstract:
A rotor blade assembly for a wind turbine includes a rotor blade having a pressure side, a suction side, a leading edge, and a trailing edge. A vortex generator accessory is mounted to either of the suction side or pressure side and includes a base portion and a protrusion member extending upwardly from the base portion. An attachment layer connects the base portion to the suction or pressure side. The attachment layer has a lower shear modulus than the base portion to allow for shear slippage between the base portion and the underlying suction or pressure side.
Abstract:
A method for installing an add-on component to a surface of a wind turbine blade includes attaching an adhesive side of strips of a double-sided adhesive tape onto either the surface of the wind turbine blade or a surface of the add-on component, the tape strips having a release liner on an opposite exposed side thereof. The tape strips having an extension tail of the release liner that extends beyond an edge of the add-on component when the add-on component is placed and held at a desired position against the surface of the wind turbine blade. With the add-on component held at the desired position, the extension tail is pulled away at an angle such that that release liner is removed along the length of the tape strip while maintaining the add-on component against the blade surface to attach the exposed adhesive under the release liner to either the surface of the wind turbine blade or the surface of the add-on component.
Abstract:
A method for installing a surface feature on a wind turbine rotor blade includes disposing the surface feature on a surface of the rotor blade with an adhesive material disposed there between, disposing a seal between at least a portion of the surface feature and the rotor blade to form a chamber there between, and, pulling a vacuum from the chamber to produce a substantially uniform force pulling the surface feature against the surface of the rotor blade.
Abstract:
A rigid template for aligning surface features on a rotor blade is disclosed. The rigid template is shaped to correspond to the surface of the rotor blade. Further, the rigid template includes a base end and a tail end opposite the base end. The base end is configured to connect to an alignment structure, the alignment structure being fixed relative to the rotor blade. The tail end includes at least one marker configured to locate at least one surface feature on the surface of the rotor blade.