Abstract:
A sensor simulator and a system for testing rotatable sensor signal transmitters using the sensor simulator is disclosed herein. The sensor simulator includes a first and a second pin. The first pin includes a first end portion and a second end portion where the first end portion is configured to electronically couple to a positive terminal of a sensor circuit of the sensor signal transmitter. The second pin includes a first end portion and a second end portion where the first end portion is configured to electronically couple to a negative terminal of the same sensor circuit. The sensor simulator further includes an electronic component having a first wire lead electronically coupled to the second end portion of the first pin and a second wire lead electronically coupled the second end portion of the second pin.
Abstract:
A fitting for positioning a probe in a hot gas path within a casing of a gas turbine engine is disclosed herein. The fitting may include a main body attachable to the casing opposite the hot gas path. The main body may include an internal bore and one or more cooling holes in communication with the internal bore. A compliant seal may be positionable within the internal bore. In addition, a follower may be positionable within the internal bore adjacent to the compliant seal. Moreover, the fitting may include a fastener configured to mate with the main body. In this manner, the follower may deform the compliant seal about the probe within the main body to secure and seal the probe within the main body.
Abstract:
A stator vane includes a platform that defines an opening. The stator vane further includes an airfoil that has a leading edge, a trailing edge, a suction side wall, and a pressure side wall. The airfoil extends radially between a base and a tip. At least one of the base or the tip includes a protrusion. The protrusion extends into the opening of the platform such that the platform surrounds the protrusion of the airfoil. The stator vane further includes a braze joint disposed between and fixedly coupling the platform and the protrusion of the airfoil. The stator vane further includes a cooling circuit defined in at least one of the protrusion or the platform to cool the braze joint.
Abstract:
A vibration damping system for a turbine nozzle or blade includes a vibration damping element including a plurality of contacting members including a plurality of damper pins. Each damper pin includes a body. A wire mesh member surrounds the body of at least one of the plurality of damper pins. The wire mesh member has a first outer dimension sized for frictionally engaging within a body opening in the turbine nozzle or blade to damp vibration. Spacer members devoid of a wire mesh member may also be used. The damper pins can have different sizes to accommodate contiguous body openings of different sizes in the nozzle or blade. The body opening can be angled relative to a radial extent of the nozzle or blade.
Abstract:
The present disclosure is directed to a turbomachine that includes a hot gas path component having an inner surface and defining a hot gas path component cavity. An impingement insert is positioned within the hot gas path component cavity. The impingement insert includes an inner surface and an outer surface and defines an impingement insert cavity and a plurality of impingement apertures fluidly coupling the impingement insert cavity and the hot gas path component cavity. A plurality of pins extends from the outer surface of the impingement insert to the inner surface of the hot gas path component.
Abstract:
A turbine rotor blade root is additively manufactured and includes a shank having a radially extending chamber defined therein. A blade mount is at a radial inner end of the shank. The blade mount has a hollow interior defined therein with the hollow interior in fluid communication with the radially extending chamber. A lattice support structure is disposed within the hollow interior of the blade mount.
Abstract:
A turbine nozzle assembly system includes a plurality of nozzle sets, where each nozzle set forms an annulus. The nozzles in each set include an inner endwall and an outer endwall that include joint openings to receive the respective endwall mount ends of an airfoil. The airfoils across the plurality of nozzle sets have an inner endwall mount end and an outer endwall mount end that are identical amongst the plurality of nozzle sets. A wing portion of the airfoil has a selected wing shape that is identical within the respective nozzle set but different amongst the plurality of nozzle sets. In this manner, the endwalls can be removed from an airfoil and replaced with an airfoil having a different wing shape that provides a different pairwise throat area. The system allows changing of a pairwise throat area for a nozzle set without replacing the entirety of each nozzle.
Abstract:
An embodiment of an independent cooling circuit for selectively delivering cooling fluid to a component of a gas turbine system includes: at least one coolant feed channel fluidly coupled to a supply of cooling fluid; and an interconnected circuit of cooling channels, including: an interconnected circuit of cooling channels embedded within an exterior wall of the component; an impingement plate; and a plurality of feed tubes connecting the impingement plate to the exterior wall of the component and fluidly coupling a supply of cooling fluid to the interconnected circuit of cooling channels; wherein the cooling fluid flows through the plurality of feed tubes into the interconnected circuit of cooling channels only in response to a formation of a breach in the exterior wall of the component that exposes at least one of the cooling channels.
Abstract:
A turbine rotor blade is additively manufactured and includes an airfoil body with a radially extending chamber for receiving a coolant flow, a tip end at a radial outer end of the airfoil body, and a shank at a radial inner end of the airfoil body. The radially extending chamber extends at least partially into the shank to define a shank inner surface. An integral impingement cooling structure is within the radially extending chamber. The integral impingement cooling structure allows an exterior surface of a hollow body thereof to be uniformly spaced from the airfoil inner surface despite the curvature of the chamber. The turbine rotor blade has impingement cooling throughout the blade.
Abstract:
A passage incorporated into an additively manufactured object, the object and a related method are disclosed. The object has an additive manufacture build direction. The passage includes: a first portion aligned along an axis oriented less than approximately 45° from the build direction; and a second portion aligned along an axis oriented greater than approximately 45° from the build direction, the second portion including at least one self-supporting top surface portion including at least one edge aligned no greater than approximately 45° from the build direction. The passage having varying cross-sectional shape along a non-linear length accommodates additive manufacture regardless of build direction.