Abstract:
Lysosomal storage diseases can be successfully treated using intraventricular delivery of the enzyme which is etiologically deficient in the disease. The administration can be performed slowly to achieve maximum effect. Surprisingly, effects are seen on both sides of the blood-brain barrier, making this an ideal delivery means for lysosomal storage diseases which affect both brain and visceral organs.
Abstract:
The invention provides methods for the synthesis of oligosaccharides comprising an aminooxy group. The invention further provides oligosaccharides comprising an aminooxy group, methods for coupling oligosaccharides comprising an aminooxy group to glycoproteins, and oligosaccharide-protein conjugates. Also provided are methods of treating a lysosomal storage disorder in a mammal by administration of an oligosaccharide-protein conjugate.
Abstract:
The invention provides methods for the synthesis of oligosaccharides comprising an aminooxy group. The invention further provides oligosaccharides comprising an aminooxy group, methods for coupling oligosaccharides comprising an aminooxy group to glycoproteins, and oligosaccharide-protein conjugates. Also provided are methods of treating a lysosomal storage disorder in a mammal by administration of an oligosaccharide-protein conjugate.
Abstract:
Lysosomal storage diseases can be successfully treated using intraventricular delivery of the enzyme which is etiologically deficient in the disease. The administration can be performed slowly to achieve maximum effect. Surprisingly, effects are seen on both sides of the blood-brain barrier, making this an ideal delivery means for lysosomal storage diseases which affect both brain and visceral organs.
Abstract:
The present provides methods for treating spinal muscular atrophy using a self-complementary recombinant adeno-associated virus (rAAV) viral particle comprising a transgene expressing SMN. In one aspect, the viral particles are administered in the spinal column or cisterna magna in a human subject; for example, a pediatric human subject. Viral particles comprising AAV9 capsids are contemplated.
Abstract:
The invention provides methods for the synthesis of oligosaccharides comprising an aminooxy group. The invention further provides oligosaccharides comprising an aminooxy group, methods for coupling oligosaccharides comprising an aminooxy group to glycoproteins, and oligosaccharide-protein conjugates. Also provided are methods of treating a lysosomal storage disorder in a mammal by administration of an oligosaccharide-protein conjugate.
Abstract:
Neurological diseases, including lysosomal storage diseases, can be successfully treated using intraventricular delivery of the therapeutic agents to bypass the blood-brain barrier. Similarly, diagnostic agents and anesthetic agents can be delivered to the brain in this manner. The administration can be performed slowly to achieve maximum effect. Such administration permits greater penetration of distal portions of the brain.
Abstract:
The invention relates to inhibitors of glucosylceramide synthase (GCS) useful for the treatment of metabolic diseases, such as lysosomal storage diseases, either alone or in combination with enzyme replacement therapy, cystic disease and for the treatment of cancer.
Abstract:
This disclosure relates to a method of treating a proteinopathy in a subject, the method comprising administering to the subject an effective amount of a quinuclidine compound. The disclosure also relates to a method of reducing, reversing or preventing the accumulation of protein aggregates in tissue of a subject diagnosed as having a proteinopathy, or being at risk of developing a proteinopathy, the method comprising administering to the subject an effective amount of a quinuclidine compound. Also disclosed is a pharmaceutical composition comprising a quinuclidine compound for use in said methods. The proteinopathy may be a synucleinopathy or a tauopathy, such as Parkinson's disease, Alzheimer's disease or dementia with Lewy bodies.