Abstract:
Compositions and methods for treating disorders affecting motor function, such as motor function affected by disease or injury to the brain and/or spinal cord, are disclosed.
Abstract:
Lysosomal storage diseases can be successfully treated using intraventricular delivery of the enzyme which is etiologically deficient in the disease. The administration can be performed slowly to achieve maximum effect. Surprisingly, effects are seen on both sides of the blood-brain barrier, making this an ideal delivery means for lysosomal storage diseases which affect both brain and visceral organs.
Abstract:
This disclosure relates to a method of treating a proteinopathy in a subject, the method comprising administering to the subject an effective amount of a quinuclidine compound. The disclosure also relates to a method of reducing, reversing or preventing the accumulation of protein aggregates in tissue of a subject diagnosed as having a proteinopathy, or being at risk of developing a proteinopathy, the method comprising administering to the subject an effective amount of a quinuclidine compound. Also disclosed is a pharmaceutical composition comprising a quinuclidine compound for use in said methods. The proteinopathy may be a synucleinopathy or a tauopathy, such as Parkinson's disease, Alzheimer's disease or dementia with Lewy bodies.
Abstract:
This disclosure pertains to methods and compositions for tolerizing a mammal's brain to exogenously administered acid sphingomyelinase polypeptide by first delivering an effective amount of a transgene encoding the polypeptide to the mammal's hepatic tissue and then administering an effective amount of the transgene to the mammal's central nervous system (CNS).
Abstract:
Lysosomal storage diseases can be successfully treated using intraventricular delivery of the enzyme which is etiologically deficient in the disease. The administration can be performed slowly to achieve maximum effect. Surprisingly, effects are seen on both sides of the blood-brain barrier, making this an ideal delivery means for lysosomal storage diseases which affect both brain and visceral organs.
Abstract:
This disclosure pertains to methods and compositions for tolerizing a mammal's brain to exogenously administered acid sphingomyelinase polypeptide by first delivering an effective amount of a transgene encoding the polypeptide to the mammal's hepatic tissue and then administering an effective amount of the transgene to the mammal's central nervous system (CNS).
Abstract:
Provided herein are novel methods for delivering recombinant adeno-associated viral (rAAV) particles to the central nervous system of a mammal (e.g., a human). In aspects, the methods involve administering rAAV particles containing a heterologous nucleic acid to the striatum and causing expression of the heterologous nucleic acid in at least the cerebral cortex and the striatum of the mammal.
Abstract:
This disclosure provides methods and compositions for treating disorders or injuries that affect motor function and control in a subject. In one aspect, the invention a transgene product is delivered to a subject's spinal cord by administering a recombinant neurotrophic viral vector containing the transgene to the brain. The viral vector delivers the transgene to a region of the brain which is susceptible to infection by the virus and which expresses the encoded recombinant viral gene product. Also provided are compositions for delivery of a transgene product to a subject's spinal cord by administering a recombinant neurotrophic viral vector containing the transgene to the subject's brain.
Abstract:
Compositions and methods for treating disorders affecting motor function, such as motor function affected by disease or injury to the brain and/or spinal cord, are disclosed.
Abstract:
Lysosomal storage diseases can be successfully treated using intraventricular delivery of the enzyme which is etiologically deficient in the disease. The administration can be performed slowly to achieve maximum effect. Surprisingly, effects are seen on both sides of the blood-brain barrier, making this an ideal delivery means for lysosomal storage diseases which affect both brain and visceral organs.