Abstract:
A semiconductor device includes a recess defined in a dielectric layer and an interconnect structure defined in the recess. The interconnect structure includes a first barrier layer lining the recess, the first barrier layer including an alloy of tantalum and a first transition metal other than tantalum, wherein a first interface between the first barrier layer and the dielectric layer has a first stress level. A second barrier layer is positioned on the first barrier layer, the second barrier layer including at least one of tantalum and tantalum nitride, wherein a second interface between the second barrier layer and the first barrier layer has a second stress level that is less than the first stress level. The interconnect structure further includes a fill material substantially filling the recess.
Abstract:
A semiconductor device includes a dielectric layer positioned above a substrate of the semiconductor device and a recess defined in the dielectric layer. An adhesion barrier layer is positioned on and in direct contact with at least the sidewalls of the recess, a barrier layer interface being defined where the adhesion barrier layer directly contacts the dielectric layer. A stress-reducing barrier layer is positioned adjacent to the adhesion barrier layer, wherein the stress-reducing barrier layer is adapted to reduce a stress level across the barrier layer interface from a first stress level to a second stress level that is less than the first stress level. At least one layer of a conductive fill material is positioned over the stress-reducing barrier layer, the at least one layer of the conductive fill material substantially filling the recess.
Abstract:
The present disclosure is generally directed to multi-layer barrier layer stacks for interconnect structures that may be used to reduce mechanical stress levels between the interconnect structure and a dielectric material layer in which the interconnect structure is formed. One illustrative method disclosed herein includes forming a recess in a dielectric layer of a substrate and forming an adhesion barrier layer including an alloy of tantalum and at least one transition metal other than tantalum to line the recess, wherein forming the adhesion barrier layer includes creating a first stress level across a first interface between the adhesion barrier layer and the dielectric layer. The method also includes forming a stress-reducing barrier layer including tantalum over the adhesion barrier layer, wherein the stress-reducing barrier layer reduces the first stress level to a second stress level less than the first stress level, and filling the recess with a fill layer.
Abstract:
Integrated circuits and methods for fabricating integrated circuits are provided. In an embodiment, a method for fabricating an integrated circuit includes providing a semiconductor substrate and forming fins over the semiconductor substrate. Each fin is formed with sidewalls. The method further includes conformally depositing a metal film stack on the sidewalls of each fin. In the method, the metal film stack is annealed to form a metal silicide film over the sidewalls of each fin.