Abstract:
Methods and systems for encoding and compressing 3D object data models are provided. An example method may involve receiving 3D mesh data for an object that includes geometry coordinates for a surface of the object. Additionally, material properties may be associated with the geometry coordinates. The method may also include identifying multiple portions of the mesh data based on the material properties associated with the geometry coordinates. For example, a given group of adjacent geometry coordinates having common material properties may be identified as a given portion. For at least some of the identified portions of the mesh data, the method may further include encoding information related to an identified portion of the mesh data and compressing the encoded information into a file of compressed geometric data.
Abstract:
Methods and systems for interacting with multiple three-dimensional (3D) object data models are provided. An example method may involve providing to a display device for display a first 3D object data model and a second 3D object data model. Information associated with a modification to the first 3D object data model may be received. Based on the received information, a same change may be applied to the first 3D object data model and applied to the second 3D object data model to obtain a first modified 3D object data model and a second modified 3D object data model. According to the method, the first modified 3D object data model and the second modified 3D object data model may be provided to the display device for substantially simultaneous display.
Abstract:
Within examples, object image masking is provided. An example method includes receiving a depth mask of an object, projecting the depth mask of the object onto an image of the object in a background so as to generate a depth image of the object in the background, determining portions of the depth image of the object in the background that are representative of the object and that are representative of the background, based on the portions of the depth image of the object in the background that are representative of the object determining a foreground mask of the object, and using the foreground mask of the object to identify portions of the image representative of the object.
Abstract:
Systems and devices for acquiring imagery and three-dimensional (3D) models of objects are provided. An example device includes a platform configured to enable an object to be positioned thereon, and a plurality of scanners configured to capture geometry and texture information of the object when the object is positioned on the platform. A first scanner is positioned below the platform so as to capture an image of a portion of an underside of the object, a second scanner is positioned above the platform, and a third scanner is positioned above the platform and offset from a position of the second scanner. The scanners are positioned such that each scanner is outside of a field of view of other scanners. Scanners may include a camera, a light source, and a light-dampening element, and the device may include a control module configured to operate the scanners to individually scan the object.
Abstract:
Examples disclose systems and methods for recognizing objects. A method may be executable to receive a query from a robot. The query may include identification data associated with an object and contextual data associated with the object. The query may also include situational data. The method may also be executable to identify the object based at least in part on the data in the query received from the robot. Further, the method may be executable to send data associated with the identified object to the robot in response to the query.
Abstract:
Methods and devices are disclosed for monitoring environmental conditions in one or more environments. In one embodiment, the method includes maintaining a plurality of environmental-condition thresholds, each of which corresponds to an environmental condition and is predetermined based on data corresponding to the environmental condition that is received from a plurality of robots. The method further includes receiving from a first robot first data corresponding to a first environmental condition in a first environment. The method may still further include making a first comparison of the first data and a first environmental-condition threshold corresponding to the first environmental condition and, based on the first comparison, triggering a notification. Triggering the notification may comprise transmitting to the robot instructions to transmit the notification to at least one of a call center and a remote device.
Abstract:
Methods and systems for interacting with multiple three-dimensional (3D) object data models are provided. An example method may involve providing to a display device for display a first 3D object data model and a second 3D object data model. Information associated with a modification to the first 3D object data model may be received. Based on the received information, a same change may be applied to the first 3D object data model and applied to the second 3D object data model to obtain a first modified 3D object data model and a second modified 3D object data model. According to the method, the first modified 3D object data model and the second modified 3D object data model may be provided to the display device for substantially simultaneous display.
Abstract:
A method includes receiving first sensor data acquired by a first sensor in communication with a cloud computing system. The first sensor data has a first set of associated attributes including a time and a location at which the first sensor data was acquired. The method also includes receiving second sensor data acquired by a second sensor in communication with the cloud computing system. The second data has a second set of associated attributes including a time and a location at which the second sensor data was acquire. Further, the method includes generating a data processing result based at least in part on the first sensor data, the first set of associated attributes, the second sensor data, and the second set of associated attributes and instructing a robot in communication with the cloud computing system to perform a task based at least in part on the data processing result.
Abstract:
A method includes receiving first sensor data acquired by a first sensor in communication with a cloud computing system. The first sensor data has a first set of associated attributes including a time and a location at which the first sensor data was acquired. The method also includes receiving second sensor data acquired by a second sensor in communication with the cloud computing system. The second data has a second set of associated attributes including a time and a location at which the second sensor data was acquire. Further, the method includes generating a data processing result based at least in part on the first sensor data, the first set of associated attributes, the second sensor data, and the second set of associated attributes and instructing a robot in communication with the cloud computing system to perform a task based at least in part on the data processing result.
Abstract:
Methods and systems for interacting with multiple three-dimensional (3D) object data models are provided. An example method may involve providing to a display device for display a first 3D object data model and a second 3D object data model. Information associated with a modification to the first 3D object data model may be received. Based on the received information, a same change may be applied to the first 3D object data model and applied to the second 3D object data model to obtain a first modified 3D object data model and a second modified 3D object data model. According to the method, the first modified 3D object data model and the second modified 3D object data model may be provided to the display device for substantially simultaneous display.