Abstract:
A panorama viewer is disclosed which facilitates navigation from within the panorama of a larger, structured system such as a map. The panorama viewer presents a viewport on a portion of a panoramic image, the viewport including a three-dimensional overlay rendered with the panoramic image. As the orientation of the viewport within the panoramic image changes, the three-dimensional overlay's orientation in three-dimensional space also changes as it is rendered with the panoramic image in a manner that matches the change in orientation of the viewport.
Abstract:
The present invention relates to annotating images. In an embodiment, the present invention enables users to create annotations corresponding to three-dimensional objects while viewing two-dimensional images. In one embodiment, this is achieved by projecting a selecting object onto a three-dimensional model created from a plurality of two-dimensional images. The selecting object is input by a user while viewing a first image corresponding to a portion of the three-dimensional model. A location corresponding to the projection on the three-dimensional model is determined, and content entered by the user while viewing the first image is associated with the location. The content is stored together with the location information to form an annotation. The annotation can be retrieved and displayed together with other images corresponding to the location.
Abstract:
The technology uses image content to facilitate navigation in panoramic image data. Aspects include providing a first image including a plurality of avatars, in which each avatar corresponds to an object within the first image, and determining an orientation of at least one of the plurality of avatars to a point of interest within the first image. A viewport is determined for a first avatar in accordance with the orientation thereof relative to the point of interest, which is included within the first avatar's viewport. In response to received user input, a second image is selected that includes at least a second avatar and the point of interest from the first image. A viewport of the second avatar in the second image is determined and the second image is oriented to align the second avatar's viewpoint with the point of interest to provide navigation between the first and second images.
Abstract:
In one aspect, one or more computing devices may capture a panoramic image. Panoramic images may refer to images having a field of view which is greater than that of the human eye, e.g., 180 degrees or greater. Some panoramic images may provide a 360-degree view of a location. In response to capturing the panoramic image, the one or more computing devices may provide for display a request for a non-panoramic, for example, a zoomed-in image. A zoomed-in image may be captured. An area of the panoramic image that corresponds to the zoomed-in image is determined by the one or more computing devices. The zoomed-in image is associated with the area by the one or more computing devices. In this regard, the panoramic image and the zoomed-in image may be taken close in time such that the images have the same or similar lighting conditions, scenes, etc.
Abstract:
Systems and methods for providing a visualization of satellite sightline obstructions are provided. An example method includes identifying an approximate position of a receiver antenna. The method further includes providing a rendering of a physical environment surrounding the receiver antenna for display within a user interface. The user interface can be provided on a display. Satellite positional data associated with the position of a satellite is accessed and a sightline between the approximate position of the receiver antenna and the position of the satellite is determined. The method further includes presenting the sightline within the user interface in association with the rendering. An example system includes a data capture system and a computing device to provide a visualization of satellite sightline obstructions.
Abstract:
Tours may be automatically generated that move between geographically-relevant imagery associated with a set of features at different geographic locations. By way of example, in response to searching for businesses or landmarks falling within a particular category and geographic area, a user may be taken on a visual tour of each business or landmark that was found as a result of the search.
Abstract:
In one aspect, a request to generate an automated tour based on a set of panoramic images is received. Each particular panoramic image is associated with geographic location information and linking information linking the particular panoramic image with one or more other panoramic images in the set. A starting panoramic image and a second panoramic image are determined based at least in part on the starting panoramic image and the linking information associated with the starting and second panoramic images. A first transition between the starting panoramic image and the second panoramic image is also determined based at least in part on the linking information for these panoramic images. Additional panoramic images as well as a second transition for between the additional panoramic images are also determined. The determined panoramic images and transitions are added to the tour according to an order of the tour.
Abstract:
In one aspect, a request to generate an automated tour based on a set of panoramic images is received. Each particular panoramic image is associated with geographic location information and linking information linking the particular panoramic image with one or more other panoramic images in the set. A starting panoramic image and a second panoramic image are determined based at least in part on the starting panoramic image and the linking information associated with the starting and second panoramic images. A first transition between the starting panoramic image and the second panoramic image is also determined based at least in part on the linking information for these panoramic images. Additional panoramic images as well as a second transition for between the additional panoramic images are also determined. The determined panoramic images and transitions are added to the tour according to an order of the tour.
Abstract:
In one aspect, one or more computing devices may capture a panoramic image. Panoramic images may refer to images having a field of view which is greater than that of the human eye, e.g., 180 degrees or greater. Some panoramic images may provide a 360-degree view of a location. In response to capturing the panoramic image, the one or more computing devices may provide for display a request for a non-panoramic, for example, a zoomed-in image. A zoomed-in image may be captured. An area of the panoramic image that corresponds to the zoomed-in image is determined by the one or more computing devices. The zoomed-in image is associated with the area by the one or more computing devices. In this regard, the panoramic image and the zoomed-in image may be taken close in time such that the images have the same or similar lighting conditions, scenes, etc.
Abstract:
A system and method is provided that displays cursors for street level images, where the cursor changes appearance based on the objects in the image, such as the geographic distance between the objects and the camera position and the surface of the objects. For example, the cursor may appear to lie flat against the objects in the image change size based on the distance between the camera and object's surface.