Abstract:
Computer-implemented methods and systems of determining semantic place data include receiving a plurality of location data reports from a plurality of mobile devices, partitioning them into localized segments, and estimating a geographic region bucket for each segment. For clustering canopies of localized segments identified as satisfying a potential geographic overlap characterization, an overlap score is calculated that correlates the overlap among actual geographic regions covered by movement of the mobile devices generating the localized segments in that given clustering canopy. A data structure that provides a hierarchical clustering configuration of the localized segments in each geographic region bucket is generated from the determined overlap scores. Additional semantic data for nodes in the data structure can also be provided.
Abstract:
Provided is a process and system for ascertaining the operating hours of a business. The process includes obtaining wireless-environment data indicative of the location of business and a timestamp; determining that a user device is located at the business responsive to both the wireless-environment data and wireless-environment data from checked-in user devices that have checked-in to the business via a social network; storing the timestamp in a timestamp data store; estimating operating hours of the business responsive to stored timestamps; and storing the estimated operating hours in a business-hours data store.
Abstract:
Computer-implemented methods and systems of determining semantic place data include receiving a plurality of location data reports from a plurality of mobile devices, partitioning them into localized segments, and estimating a geographic region bucket for each segment. For clustering canopies of localized segments identified as satisfying a potential geographic overlap characterization, an overlap score is calculated that correlates the overlap among actual geographic regions covered by movement of the mobile devices generating the localized segments in that given clustering canopy. A data structure that provides a hierarchical clustering configuration of the localized segments in each geographic region bucket is generated from the determined overlap scores. Additional semantic data for nodes in the data structure can also be provided.
Abstract:
Systems and methods for generating a user location history are provided. One example method includes obtaining a plurality of location reports from one or more devices associated with the user. The method includes clustering the plurality of location reports to form a plurality of segments. The method includes identifying a plurality of location entities for each of the plurality of segments. The method includes determining, for each of the plurality of segments, one or more feature values associated with each of the location entities identified for such segment. The method includes determining, for each of the plurality of segments, a score for each of the plurality of location entities based at least in part on a scoring formula. The method includes selecting one of plurality of locations entities for each of the plurality of segments.
Abstract:
Systems and methods for generating a user location history are provided. One example method includes obtaining a plurality of location reports from one or more devices associated with the user. The method includes clustering the plurality of location reports to form a plurality of segments. The method includes identifying a plurality of location entities for each of the plurality of segments. The method includes determining, for each of the plurality of segments, one or more feature values associated with each of the location entities identified for such segment. The method includes determining, for each of the plurality of segments, a score for each of the plurality of location entities based at least in part on a scoring formula. The method includes selecting one of plurality of locations entities for each of the plurality of segments.
Abstract:
Systems and methods for identifying an entity associated with a wireless network access point are provided. An estimated location of a wireless network access point and a network name associated with a wireless network access point can be accessed. The network name can be analyzed to identify at least one text signal. An entity associated with the wireless network access point can be identified based at least in part on the text signal. For instance, a confidence score for a plurality of candidate entities identified using the estimated location of the wireless network access point can be determined based on the text signal. The confidence score can be used to identify the entity associated with the wireless network access point. Information associated with the entity can be presented in a graphical user interface.
Abstract:
Apparatus and method for identifying a geographical route along which a network accessible device is repetitively moved. In accordance with some embodiments, a sequence of geopositioning samples from a network accessible device is received, the samples indicative of different geographical locations of the device over a time interval. A geographical route is identified along which the device was repetitively moved from the sequence of samples. A content item is selected for an entity having a physical location proximate the geographical route. The content item is displayed on a display associated with a user of the network accessible device.