Abstract:
A method includes acquiring scan data for an object to be imaged using an imaging scanner. The method also includes reconstructing a display image using the scan data. Further, the method includes determining one or more aspects of a quantitation imaging algorithm for generating a quantitation image, wherein the one or more aspects of the quantitation imaging algorithm are selected to optimize a quantitation figure of merit for lesion quantitation. The method also includes reconstructing a quantitation image using the scan data and the quantitation imaging algorithm; displaying, on a display device, the display image; determining a region of interest in the display image; determining, for the region of interest, a lesion quantitation value using a corresponding region of interest of the quantitation image; and displaying, on the display device, the lesion quantitation value.
Abstract:
A scintillator block is presented. The scintillator block includes at least one scintillator having an isotropic volume. Furthermore, the scintillator block includes a laser-generated three-dimensional pattern positioned within the isotropic volume of the at least one scintillator, where the laser-generated three-dimensional pattern is configured to modify one or more optical properties within the isotropic volume of the at least one scintillator, and where the three-dimensional pattern varies along one or more of a depth, a width, and an angular orientation of the at least one scintillator.
Abstract:
A method includes acquiring scan data for an object to be imaged using an imaging scanner. The method also includes reconstructing a display image using the scan data. Further, the method includes determining one or more aspects of a quantitation imaging algorithm for generating a quantitation image, wherein the one or more aspects of the quantitation imaging algorithm are selected to optimize a quantitation figure of merit for lesion quantitation. The method also includes reconstructing a quantitation image using the scan data and the quantitation imaging algorithm; displaying, on a display device, the display image; determining a region of interest in the display image; determining, for the region of interest, a lesion quantitation value using a corresponding region of interest of the quantitation image; and displaying, on the display device, the lesion quantitation value.
Abstract:
According to some embodiments, emission projection data and second source scan data are received. A prior map and a prior weight map are generated from second source scan data. A penalty function calculates voxel-wise differences between the prior map and a given image, transforms the voxel-wise differences and calculates a weighted sum of the transformed differences, using weights based on the prior weight map. Joint reconstruction of an emission image and an attenuation map proceeds iteratively and uses the penalty function.
Abstract:
Systems and method for identifying bone marrow in medical images are provided. A method includes obtaining a three-dimensional (3D) computed tomography (CT) volume data set corresponding to an imaged volume and identifying voxels in the 3D CT volume data set having a Hounsfield Unit (HU) value below a bone threshold. The voxels are identified without using image continuity. The method further includes marking the identified voxels as non-bone voxels, determining definite tissue voxels based on the identified non-bone voxels and expanding a region defined by the definite tissue voxels. The method also includes segmenting the expanded region to identify bone voxels and bone marrow voxels and identifying bone marrow as voxels that are not the bone voxels.
Abstract:
According to some embodiments, an emission tomography scanner may acquire emission scan data. One or more anatomical images may be generated using an anatomical imaging system, and the anatomical images may be processed to obtain an initial attenuation image. An emission image and a corrected attenuation image may be jointly reconstructed from the acquired emission scan data, the corrected attenuation image representing a deformation of the initial attenuation image. A final reconstructed emission image may then be calculated based on the reconstructed emission image and/or the corrected attenuation image. The final reconstructed emission image may then be stored in a data storage system and/or displayed on a display system.
Abstract:
A method includes receiving Emission Tomography (ET) data of a subject from an ET/Computed Tomography (CT) scanner. The method further includes generating a first motion signal corresponding to a first bed position of the ET/CT scanner from the received ET data and determining whether the first motion signal indicates a periodic motion. The method also includes calculating a first time period from the first motion signal in response to determining that the first motion signal indicates the periodic motion and sending a first acquire notification to the ET/CT scanner to acquire Cinematographic (CINE) Computed Tomography (CT) data from the first bed position based on the first time period.
Abstract:
A method includes receiving Emission Tomography (ET) data of a subject from an ET/Computed Tomography (CT) scanner. The method further includes generating a first motion signal corresponding to a first bed position of the ET/CT scanner from the received ET data and determining whether the first motion signal indicates a periodic motion. The method also includes calculating a first time period from the first motion signal in response to determining that the first motion signal indicates the periodic motion and sending a first acquire notification to the ET/CT scanner to acquire Cinematographic (CINE) Computed Tomography (CT) data from the first bed position based on the first time period.
Abstract:
Exemplary embodiments of the present disclosure are directed to scheduling positron emission tomography (PET) scans for a combined PET-MRI scanner based on an acquisition of MR scout images of a subject. An anatomy and orientation of the subject can be determined based on the MR scout images and the schedule for acquiring PET scans of the subject can be determined from the anatomy of the subject. The schedule generated using exemplary embodiments of the present disclosure can specify a sequence of bed positions, scan durations at each bed position, and whether respiratory gating will be used at one or more of the bed positions.
Abstract:
According to some embodiments, an emission tomography scanner may acquire emission scan data. One or more anatomical images may be generated using an anatomical imaging system, and the anatomical images may be processed to obtain an initial attenuation image. An emission image and a corrected attenuation image may be jointly reconstructed from the acquired emission scan data, the corrected attenuation image representing a deformation of the initial attenuation image. A final reconstructed emission image may then be calculated based on the reconstructed emission image and/or the corrected attenuation image. The final reconstructed emission image may then be stored in a data storage system and/or displayed on a display system.