Abstract:
Systems and methods of determining computing device characteristics from computer network activity are provided. A data processing system can obtain data identifying a global cluster that indicates an interest category and can create a sub-cluster of the global cluster based on a characteristic common to content access computing devices. A weight indicating a correlation between the characteristic common to content access computing devices and the interest category can be assigned to the sub-cluster. Responsive to a communication between a first content access computing device and a content publisher computing device, the data processing system can identify a characteristic. The data processing system can associate the first content access computing device with the sub-cluster based on the characteristic of the first content access computing device and the characteristic common to the content access computing devices, and based on the weight can determine a status of the first content access computing device.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for generating labeled images. One of the methods includes selecting a plurality of candidate videos from videos identified in a response to a search query derived from a label for an object category; selecting one or more initial frames from each of the candidate videos; detecting one or more initial images of objects in the object category in the initial frames; for each initial frame including an initial image of an object in the object category, tracking the object through surrounding frames to identify additional images of the object; and selecting one or more images from the one or more initial images and one or more additional images as database images of objects belonging to the object category.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using recurrent neural networks to analyze health events. One of the methods includes: processing each of a plurality of initial temporal sequences of health events to generate, for each of the initial temporal sequences, a respective network internal state of a recurrent neural network for each time step in the initial temporal sequence; storing, for each of the initial temporal sequences, one or more of the network internal states for the time steps in the temporal sequence in a repository; obtaining a first temporal sequence; processing the first temporal sequence using the recurrent neural network to generate a sequence internal state for the first temporal sequence; and selecting one or more initial temporal sequences that are likely to include health events that are predictive of future health events in the first temporal sequence.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using recurrent neural networks to analyze health events. One of the methods includes: processing each of a plurality of initial temporal sequences of health events to generate, for each of the initial temporal sequences, a respective network internal state of a recurrent neural network for each time step in the initial temporal sequence; storing, for each of the initial temporal sequences, one or more of the network internal states for the time steps in the temporal sequence in a repository; obtaining a first temporal sequence; processing the first temporal sequence using the recurrent neural network to generate a sequence internal state for the first temporal sequence; and selecting one or more initial temporal sequences that are likely to include health events that are predictive of future health events in the first temporal sequence.
Abstract:
A method, computer readable storage device, and apparatus for determining the distance a computing device is located from a user's face. An image of an individual is obtained. A first pupil location and a second pupil location are identified based on the obtained image. A first distance between the identified first and second pupil location is determined. A second distance between the individual and the computing device is determined based on the determined first distance between the identified first and second pupil locations.
Abstract:
Methods and apparatus related to determining reply content for a reply to an electronic communication. Some implementations are directed generally toward analyzing a corpus of electronic communications to determine relationships between one or more original message features of “original” messages of electronic communications and reply content that is included in “reply” messages of those electronic communications. Some implementations are directed generally toward providing reply text to include in a reply to a communication based on determined relationships between one or more message features of the communication and the reply text.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for resizing neural network layers, the method including obtaining data specifying a trained neural network, wherein the neural network comprises one or more neural network layers; reducing a size of one or more of the neural network layers to generate a resized neural network, including: selecting one or more neural network layers for resizing; for each selected neural network layer: determining an effective dimensionality reduction for the neural network layer; based on the determined effective dimensionality reduction, resizing the neural network layer; and retraining the resized neural network.
Abstract:
Methods, systems, and apparatus, including computer programs encoded on computer storage media, for using recurrent neural networks to analyze health events. One of the methods includes: processing each of a plurality of initial temporal sequences of health events to generate, for each of the initial temporal sequences, a respective network internal state of a recurrent neural network for each time step in the initial temporal sequence; storing, for each of the initial temporal sequences, one or more of the network internal states for the time steps in the temporal sequence in a repository; obtaining a first temporal sequence; processing the first temporal sequence using the recurrent neural network to generate a sequence internal state for the first temporal sequence; and selecting one or more initial temporal sequences that are likely to include health events that are predictive of future health events in the first temporal sequence.