摘要:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.
摘要:
Provided is a microporous polyolefin multilayer film which may be used as a separator for a battery, and a method for preparing the same. At least one layer of the microporous polyolefin multilayer film contains 90˜100 wt % of polyethylene having a melting temperature of 130˜140° C. and at least the other layer has 20 wt % or more of a heat resistant resin and 80 wt % or less of a filler selected from the group consisting of an organic filler, an inorganic filler and a mixture thereof. The heat resistant resin is preferably a semi crystalline polymer or an amorphous polymer. Preferably, the semi crystalline polymer has a degree of crystallinity of 10-45% or a heat of fusion for melting of 20˜90 J/g and has a melting temperature of 145˜250° C. and a glass transition temperature of −100˜90° C. Also, preferably, the amorphous polymer has no crystal and has a glass transition temperature of 90˜120° C.
摘要:
The present invention relates to a multi-layered microporous polyolefin film for a battery separator and a method for preparing the same. The microporous multi-layered film of the present invention has a characteristics to have both the low shutdown temperature conferred by the polyethylene and the high melt fracture temperature conferred by the polypropylene and heat-resistant filler. In addition, it has the high strength and stability conferred by the micropores prepared under wet process and the high permeability and high strength conferred by the macropores prepared under dry process. Therefore, this multi-layered film can be used effectively to manufacture a secondary battery with high capacity and high power.