Abstract:
There is disclosed additive manufacturing apparatus comprising: a controller to: receive object data relating to an object to be generated; and define print data for additive manufacture of the object by ejection of a print agent on build material in a pattern corresponding to selective fusing of the build material, wherein the print data is defined based on the object data so that the pattern defines a shield feature embedded within the object to inhibit fusing of build material corresponding to the shield feature relative build material corresponding to an adjacent portion of the object; and a print agent distributor to eject a print agent on build material based on the print data.
Abstract:
In one example of the disclosure, a first area of an image to be printed at a first gloss level is identified. A second area of the image to be printed at a lesser second gloss level is identified. Printing of the image is caused in a gloss-varying printmode that applies a pretreatment fluid to a media where the second area is to be printed, and not where the first area is to be printed, and applies a colorant or colorants to the media where the first and second areas are to be printed.
Abstract:
Image processing transforms input multi-level image data into output image data having a smaller number of levels (the input and output image data represents images formed of cells). The image processing distributes quantization error of a target cell of the image to neighbour cells in proportions determined by a set of weights. The distribution excludes neighbour cells whose data level is less than a threshold value from receiving distributed quantization error, or allows just a fraction of the quantization error to be distributed to such neighbour cells.
Abstract:
There is disclosed additive manufacturing apparatus comprising: a controller to: receive object data relating to an object to be generated; and define print data for additive manufacture of the object by ejection of a print agent on build material in a pattern corresponding to selective fusing of the build material, wherein the print data is defined based on the object data so that the pattern defines a shield feature embedded within the object to inhibit fusing of build material corresponding to the shield feature relative build material corresponding to an adjacent portion of the object; and a print agent distributor to eject a print agent on build material based on the print data.
Abstract:
In an example, a method includes analysing, using at least one processor, object model data representing at least a portion of an object to be generated by an additive manufacturing apparatus by fusing a build material to determine at least one predicted object generation temperature. The method may further include identifying, using at least one processor and from said analysing, a feature of the at least a portion of the object associated with a predicted object generation temperature which is below a fusing temperature of build material to be used in object generation. The method may further include determining, using at least one processor, modification data to be used in object generation, the modification data being to increase a temperature of the feature in object generation.
Abstract:
There is disclosed additive manufacturing apparatus comprising: a controller (110) to: receive object data relating to an object to be generated; and define print data for additive manufacture of the object by ejection of a print agent on build material in a pattern corresponding to selective fusing of the build material, wherein the print data is defined based on the object data so that the pattern defines a shield feature (56) embedded within the object to inhibit fusing of build material corresponding to the shield feature relative build material corresponding to an adjacent portion of the object; and a print agent distributor (104) to eject a print agent on build material based on the print data.
Abstract:
There is provided a method of generating print data for use by an additive manufacturing system to generate a plurality of 3D objects within a build chamber having a build surface. First spatial data defining a first 3D object and second spatial data defining a second 3D object is received. First print data is generated to cause the additive manufacturing system to manufacture the first 3D object at least partly from a first build material. Intermediate print data is generated to cause the additive manufacturing system to manufacture a partition comprising a 3D object configured to fill the build chamber in a plane parallel to the build surface. Second print data is generated to cause the additive manufacturing system to manufacture the second 3D object at least partly from a second build material.
Abstract:
In one example of the disclosure, a first area of an image to be printed at a first gloss level is identified. A second area of the image to be printed at a lesser second gloss level is identified. Printing of the image is caused in a gloss-varying printmode that applies a pretreatment fluid to a media where the second area is to be printed, and not where the first area is to be printed, and applies a colorant or colorants to the media where the first and second areas are to be printed.
Abstract:
A method is described in which a printed image which has been printed by a printer based on a printing template is repaired. A damaged area of the printed image is identified and a reprinting segment on the printed image is determined such as to overlap the identified damaged area. With the printer a layer of printing fluid is printed over the damaged image and a correction printing template is printed. The correction printing template includes a segment of the printing template that corresponds to the reprinting segment of the printed image.
Abstract:
There is disclosed additive manufacturing apparatus comprising: a controller (110) to: receive object data relating to an object to be generated; and define print data for additive manufacture of the object by ejection of a print agent on build material in a pattern corresponding to selective fusing of the build material, wherein the print data is defined based on the object data so that the pattern defines a shield feature (56) embedded within the object to inhibit fusing of build material corresponding to the shield feature relative build material corresponding to an adjacent portion of the object; and a print agent distributor (104) to eject a print agent on build material based on the print data.