Abstract:
Variable stator vane assemblies and stator vanes thereof having a local swept leading edge are provided. The variable stator vane comprises an airfoil disposed between spaced apart inner and outer buttons centered about a rotational axis. The inner and outer buttons each have a button forward edge portion. The airfoil includes leading and trailing edges, pressure and suction sides, and a root and a tip. The leading edge, at least a portion of which extends forward of the buttons, includes a local forward sweep at the root, thereby forming a locally swept root of the leading edge thereat. The button forward edge portion of the inner button is substantially vertically aligned with the locally swept leading edge root. Methods are also provided for minimizing endwall leakage in the variable stator vane assembly using the same.
Abstract:
Variable stator vane assemblies and stator vanes thereof having a local swept leading edge are provided. The variable stator vane comprises an airfoil disposed between spaced apart inner and outer buttons centered about a rotational axis. The inner and outer buttons each have a button forward edge portion. The airfoil includes leading and trailing edges, pressure and suction sides, and a root and a tip. The leading edge includes a local forward sweep at the root, a local aft sweep at the tip, or both, thereby forming a locally swept leading edge thereat. The button forward edge portion of one or both of the inner and outer buttons is substantially coextensive with the locally swept leading edge. Methods are also provided for minimizing endwall leakage in the variable stator vane assembly using the same.
Abstract:
Rotor systems and methods for improved performance with extended range to stall fabricated through the use of additive manufacturing. A rotor has blades that extend to tips and rotates about an axis. A casing fits over the rotor so that the tips are configured to pass proximate the casing when the rotor rotates. The casing channels a flow stream across the rotor. Grooves are defined in the casing and extend longitudinally at an acute angle relative to the axis. The grooves extend a distance upstream from a leading edge of the blades and over at least a portion of the blade tips so that the blade tips are configured to pass across the grooves when the rotor rotates.
Abstract:
Multistage gas turbine engine (GTE) compressors having optimized stall enhancement feature (SEF) configurations are provided, as are methods for the production thereof. The multistage GTE compressor includes a series of axial compressor stages each containing a rotor mounted to a shaft of a gas turbine engine. In one embodiment, the method includes the steps or processes of selecting a plurality of engine speeds distributed across an operational speed range of the gas turbine engine, identifying one or more stall limiting rotors at each of the selected engine speeds, establishing an SEF configuration in which SEFs are integrated into the multistage GTE compressor at selected locations corresponding to the stall limiting rotors, and producing the multistage GTE compressor in accordance with the optimized SEF configuration.
Abstract:
Variable vane devices containing rotationally-driven translating vane structures are provided, as are methods for fabricating variable vane devices. In one embodiment, the variable vane device includes a flow assembly having a centerline, an annular flow passage extending through the flow assembly, cam mechanisms, and rotationally-driven translating vane structures coupled to the flow assembly and rotatable relative thereto. The translating vane structures include vane bodies positioned within the annular flow passage and angularly spaced about the centerline. During operation of the variable vane device, the cam mechanisms adjust translational positions of the vane bodies within the annular flow passage in conjunction with rotation of the translating vane structures relative to the flow assembly. By virtue of the translational movement of the translating vane structures, a reduction in the clearances between the vane bodies and neighboring flow assembly surfaces can be realized to reduce end gap leakage and boost device performance.
Abstract:
A compressor section includes a shroud surface and a rotor with a blade tip that opposes the shroud surface. The rotor is configured to rotate within the shroud about an axis of rotation. Moreover, the compressor section includes a serration groove that is recessed into the shroud surface. The serration groove includes a forward portion with a forward transition and a forward surface that faces in the downstream direction. The forward transition is convexly contoured between the shroud surface and the forward surface. The serration groove includes a trailing portion with a taper surface and a trailing transition. The taper surface tapers inward as the taper surface extends from the forward surface to the trailing transition. The trailing transition is convexly contoured between the taper surface and the shroud surface.
Abstract:
A rotor blade comprises a mount and a blade that extends from the mount along a radial axis. The leading edge includes an indent segment. The leading edge has a leading edge radial length measured along the radial axis. The indent segment has an indent radial length measured along the radial axis. The indent segment has an indent depth. A first ratio of the indent radial length to the leading edge radial length is at most 0.5. A second ratio of the indent depth to the indent radial length is at least 0.05.
Abstract:
Variable stator vane assemblies and stator vanes thereof having a local swept leading edge are provided. The variable stator vane comprises an airfoil disposed between spaced apart inner and outer buttons centered about a rotational axis. The inner and outer buttons each have a button forward edge portion. The airfoil includes leading and trailing edges, pressure and suction sides, and a root and a tip. The leading edge includes a local forward sweep at the root, a local aft sweep at the tip, or both, thereby forming a locally swept leading edge thereat. The button forward edge portion of one or both of the inner and outer buttons is substantially coextensive with the locally swept leading edge. Methods are also provided for minimizing endwall leakage in the variable stator vane assembly using the same.
Abstract:
Systems and methods for stable operation of a compressor of a gas turbine engine include axial stages, each including a series of rotor blades. A centrifugal stage has a centrifugal impeller disposed downstream from the axial stages. Air flows through the compressor first through the axial stages and then through the centrifugal stage. Each respective axial stage includes mechanisms for the avoidance of certain operating conditions of the compressor such as surge. The mechanisms include variable vane sets disposed upstream from a series of the rotor blades or a bleed port or ports around the respective axial stage downstream from the series of rotor blades to selectively extract air from the respective axial stage.
Abstract:
A gas turbine engine includes a shroud with an abradable section and a non-abradable section that cooperatively define a shroud surface. The gas turbine engine also includes a rotor that is supported for rotation within the shroud to generate an aft axial fluid flow. The rotor includes a blade with a blade tip that is crowned and that opposes the abradable section and the non-abradable section of the shroud surface. A crown area of the blade tip opposes the abradable section. A casing treatment feature is provided in the non-abradable section of the shroud to oppose the blade tip of the rotor.