Abstract:
Current imbalance may be detected in a 3-phase power system by monitoring current output between two points of a phase signal provided along wire pairs from an inverter to a motor. In some embodiments, each wire of a wire pair leading to the motor from the inverter may be provided with a line current sensor. A comparison of current output from each wire in the wire pair may be performed to determine if a current imbalance is present. In some embodiments, a phase current sensor may be coupled to a phase input of the inverter. Failures in the 3-phase system may be detected by measuring the output from each phase current sensor for imbalanced distribution of power output. In some embodiments, the output from the phase current sensors may be compared to an output of a line current sensor along the same phase for current imbalances or harness failures.
Abstract:
A system for generating and supplying electrical power to DC loads on an aircraft may include a permanent magnet machine (PMM) generating an output voltage at a plurality of output terminals and a solid-state switch connected to each of the output terminals to short-circuit the output terminal when the switch is ON. A control unit may be configured to detect an unbalanced fault in the system and, responsively to said detection, to close all of the switches simultaneously to convert the unbalanced fault to a balanced fault so that DC currents are precluded from circulating within the PMM.
Abstract:
A boosting AC-to-DC converter may include a main rectifier, first and second auxiliary rectifiers, and an autotransformer. The autotransformer may include a plurality of winding assemblies each having a primary terminal connected to an AC power source, a main secondary terminal connected to the main rectifier, a first auxiliary secondary terminal connected to the first auxiliary rectifier, and a second auxiliary secondary terminal connected to the second auxiliary rectifier. Impedance between the primary terminal of each of the winding assemblies and the main rectifier is less than impedance between the primary terminal of each of the winding assemblies and either the first auxiliary rectifier or the second auxiliary rectifier. Impedance between the primary terminal of each of the first winding assemblies and the first auxiliary rectifier is different from impedance between the primary terminal of each of the winding assemblies and the second auxiliary rectifier.