BIPHASIC COATINGS WITH CHEMICAL SENSING, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20220381718A1

    公开(公告)日:2022-12-01

    申请号:US17680195

    申请日:2022-02-24

    Abstract: Some variations provide a system for sensing a chemical active in a coating, the system comprising: a coating disposed on a substrate; a chemical active contained within the coating, wherein the chemical active is mobile within the coating, and wherein the chemical active is ionically and/or electrically conductive; a first electrode and a second electrode configured to measure AC impedance within the coating; and an electrical meter configured in electrical communication with the first and second electrodes to read a signal corresponding to the AC impedance. Some methods comprise: pressing electrodes against the coating; reading out an impedance value; and converting the impedance value to a concentration of the chemical active in the coating. Other methods comprise: adding a solvent to a coating surface; pressing electrodes against a surface region; reading out an impedance value; and converting the impedance value to a concentration of the chemical active in the coating.

    FAST-ACTING ANTIMICROBIAL SURFACES, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20220225608A1

    公开(公告)日:2022-07-21

    申请号:US17713356

    申请日:2022-04-05

    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99% of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.

    FAST-ACTING ANTIMICROBIAL SURFACES, AND METHODS OF MAKING AND USING THE SAME

    公开(公告)号:US20210386059A1

    公开(公告)日:2021-12-16

    申请号:US17090968

    申请日:2020-11-06

    Abstract: An antimicrobial coating is disclosed that provides fast transport rates of biocides for better effectiveness to deactivate SARS-CoV-2 and other viruses or bacteria on common surfaces. Some variations provide an antimicrobial structure comprising: a solid structural phase comprising a solid structural material; a continuous transport phase that is interspersed within the solid structural phase, wherein the continuous transport phase comprises a solid transport material; and an antimicrobial agent contained within the continuous transport phase, wherein the solid structural phase and the continuous transport phase are separated by an average phase-separation length from about 100 nanometers to about 500 microns. The antimicrobial structure is capable of destroying at least 99.99 wt % of bacteria and/or viruses in 10 minutes of contact. Many options are disclosed for suitable materials to form the solid structural phase, the continuous transport phase, and the antimicrobial agent.

Patent Agency Ranking