Abstract:
A picture prediction method includes: determining motion vectors of W control points in a current picture block; obtaining motion vectors of P pixel units of the current picture block by using a motion model and the motion vectors of the W control points, where precision of the determined motion vectors of the W control points is 1/n of pixel precision, precision of the motion vector of each of the P pixel units is 1/N of the pixel precision, the motion vector of each of the P pixel units is used to determine a corresponding reference pixel unit in a reference picture of a corresponding pixel unit; and performing interpolation filtering on a pixel of the corresponding reference pixel unit by using an interpolation filter with a phase of Q, to obtain a predicted pixel value of each of the P pixel units.
Abstract:
A picture prediction method includes: determining motion vectors of W control points in a current picture block; obtaining motion vectors of P pixel units of the current picture block by using a motion model and the motion vectors of the W control points, where precision of the determined motion vectors of the W control points is 1/n of pixel precision, precision of the motion vector of each of the P pixel units is 1/N of the pixel precision, the motion vector of each of the P pixel units is used to determine a corresponding reference pixel unit in a reference picture of a corresponding pixel unit; and performing interpolation filtering on a pixel of the corresponding reference pixel unit by using an interpolation filter with a phase of Q, to obtain a predicted pixel value of each of the P pixel units.
Abstract:
An encoding method, a decoding method, an encoding apparatus, a decoding apparatus, for a video image. The encoding method includes: determining an optimal merged neighboring block for a current block based on a motion vector merging technology; determining, based a prediction direction of the optimal merged neighboring block, a motion vector derivation mode that needs to be used by a decoder; correcting a motion vector of the current block based on the motion vector derivation mode; and determining a residual between a predicted value and an original value of the current block based on the corrected motion vector, thereby encoding the current block. According to the technical solutions, a more accurate predicted value is obtained by correcting the motion vector, and a smaller residual is generated.
Abstract:
A picture prediction method includes: determining two pixel samples in a current picture block, and determining a candidate motion information unit set corresponding to each of the two pixel samples; determining a merged motion information unit set i including two motion information units; and predicting a pixel value of the current picture block by using an affine motion model and the merged motion information unit set i.
Abstract:
A method, an apparatus and a system for a rapid motion search applied in template matching are disclosed. The method includes: selecting motion vectors of blocks related to a current block as candidate motion vectors of the current block; after the uniqueness of a series of the candidate motion vectors of the current block is maintained, calculating the cost function of the candidate motion vectors in a corresponding template area of a reference frame, and obtaining the motion vector of the best matching template from the candidate motion vectors of the current block. In the embodiments of the present invention, there is no need to determine a large search range and no need to determine the corresponding search path template, and it is only necessary to perform a search in a smaller range.
Abstract:
The present disclosure provides a method and an apparatus for rounding a coordinate value of a non-integer pixel position motion vector. The method includes: rounding a coordinate value of a non-integer pixel position motion vector, which includes: for each dimension of coordinates of the non-integer pixel position motion vector, when a coordinate in the dimension is a non-integer pixel position, rounding the coordinate value of the non-integer pixel position motion vector in the dimension to one of integer pixel coordinate positions A and B if distances from the coordinate of the non-integer pixel position motion vector in the dimension to the integer pixel coordinate positions A and B adjacent to the non-integer pixel position in the dimension are the same, where an integer pixel coordinate position is determined by a sign of the coordinate value of the non-integer pixel position motion vector in the dimension.
Abstract:
An image prediction method and apparatus is disclosed. The image prediction method includes: determining, according to information about adjacent image units adjacent to a to-be-processed image unit, whether a set of candidate prediction modes for the to-be-processed image unit includes an affine merge mode, where the affine merge mode indicates that respective predicted images of the to-be-processed image unit and the adjacent image units of the to-be-processed image unit are obtained by using a same affine model; parsing a bitstream to obtain first indication information; determining, in the set of candidate prediction modes, a prediction mode for the to-be-processed image unit according to the first indication information; and determining a predicted image of the to-be-processed image unit according to the prediction mode. The method reduces a bit rate of encoding a prediction mode, thereby improving encoding efficiency.
Abstract:
The present invention relates to the field of video image processing, and provides a filtering method and an apparatus, to resolve a problem that subjective quality and objective quality of an image deteriorate because filtering processing cannot be performed on internal blocks of a non-translational motion prediction unit.
Abstract:
An image encoding method includes: determining N encoded units from adjacent encoded units of a to-be-encoded unit according to a first preset rule, where a motion prediction mode of the N encoded units is the same as that of the to-be-encoded unit; generating an nth motion vector group by using a first preset algorithm and based on a motion vector of an nth encoded unit; determining, from obtained N motion vector groups according to a second preset rule, one motion vector group as an optimal motion vector group; determining a prediction sample value of each sample unit in the to-be-encoded unit by using a second preset algorithm and based on the optimal motion vector group; and encoding a prediction residual of each sample unit and an index identifier of the optimal motion vector group, to obtain a bitstream corresponding to the to-be-encoded unit.
Abstract:
An image prediction method and apparatus is disclosed. The image prediction method includes: determining, according to information about adjacent image units adjacent to a to-be-processed image unit, whether a set of candidate prediction modes for the to-be-processed image unit includes an affine merge mode, where the affine merge mode indicates that respective predicted images of the to-be-processed image unit and the adjacent image units of the to-be-processed image unit are obtained by using a same affine model; parsing a bitstream to obtain first indication information; determining, in the set of candidate prediction modes, a prediction mode for the to-be-processed image unit according to the first indication information; and determining a predicted image of the to-be-processed image unit according to the prediction mode. The method reduces a bit rate of encoding a prediction mode, thereby improving encoding efficiency.