Abstract:
Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, wherein the second reactant source is a source of ambient air, and a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank.
Abstract:
Fuel tank inerting systems and methods for aircraft are provided. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, the first source arranged to receive fuel from the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, and wherein the first reactant is directly injected from the first reactant source without the use of a heater.
Abstract:
A system and method that comprises an air cycle machine, a flow of bleed air, at least one heat exchanger, and an inlet configured to supply the flow of the bleed air is provided. The bleed air directly flows from a source to either a compressor of the air cycle machine or the at least one heat exchanger in accordance with a high pressure, low pressure, or pressure boost operation mode. The system and method also can also utilize recirculated air flowing from the chamber to drive or maintain the air cycle machine in accordance with the above modes.
Abstract:
A vapor cycle liquid cooling system for an aircraft includes a liquid vapor cycle system, an air handling unit, and a liquid loop in thermal communication with the liquid vapor cycle system and the air handling unit. The liquid vapor cycle system includes a cooling liquid outlet configured to deliver a cooling liquid in the liquid loop and a heating liquid outlet configured to deliver a heating liquid in the liquid loop. The vapor cycle liquid cooling system is configured to deliver the cooling liquid to the air handling unit and is configured to modulate a flow of the heating liquid to the air handling unit.
Abstract:
A fuel tank inerting system is provided including an air flow comprising air from a first source having a first temperature and air from a second source having a second temperature. The second temperature is cooler than the first temperature. At least one separating module is configured to separate an inert gas from the air flow.
Abstract:
Fuel tank inerting systems for aircraft are described. The systems include a fuel tank, a first reactant source fluidly connected to the fuel tank, a second reactant source, a catalytic reactor arranged to receive a first reactant from the first source and a second reactant from the second source to generate an inert gas that is supplied to the fuel tank to fill a ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out an inert gas and a byproduct, a reheater arranged between the catalytic reactor and the heat exchanger, and a recirculation loop configured to extract air from downstream of the heat exchanger, pass the extracted air through the reheater, and inject reheated air upstream of the catalytic reactor.
Abstract:
An air separation module includes a canister extending between a first end and an opposite second end, a separator fixed within the canister to separate a compressed air flow into an oxygen-enriched air flow fraction and an oxygen-depleted air flow fraction, and a one-piece cap. The one-piece cap is connected to the first end of the canister and has a filter module mount portion on a side of the one-piece cap opposite the separator to support a filter module with the air separation module. Nitrogen generation systems and methods of making air separation modules are also described.
Abstract:
Fuel tank inerting systems are provided. The systems include a fuel tank, an air source arranged to supply air into a reactive flow path, a catalytic reactor having a plurality of sub-reactors along the flow path, and a heat exchanger. The sub-reactors are arranged relative to the heat exchanger such that the flow path passes through at least a portion of the heat exchanger between two sub-reactors along the flow path. At least one fuel injector is arranged relative to at least one sub-reactor. The fuel injector is configured to inject fuel into the flow path at at least one of upstream of and in the respective at least one sub-reactor to generate a fuel-air mixture. A fuel tank ullage supply line fluidly connects the flow path to the fuel tank to supply an inert gas to a ullage of the fuel tank.
Abstract:
Cabin outflow temperature control systems and methods for use on aircraft are described. The systems include an aircraft cabin, a heat load source, a heat exchanger configured to receive cabin outflow air from the aircraft cabin and heat load discharge air, the heat exchanger configured to enable thermal transfer from the heat load discharge air to the cabin outflow air to generate high temperature cabin outflow air and low temperature discharge air as outputs from the heat exchanger, and one or more downstream operation systems configured to receive the high temperature cabin outflow air and perform a downstream operation using said high temperature cabin outflow air.
Abstract:
Fuel tank inerting systems for aircraft are provided. The systems include a fuel tank, a catalytic reactor arranged to receive a first reactant from a first reactant source and a second reactant from a second reactant source to generate an inert gas that is supplied to the fuel tank to fill an ullage space of the fuel tank, a heat exchanger arranged between the catalytic reactor and the fuel tank and configured to at least one of cool and condense an output from the catalytic reactor to separate out the inert gas, and a controller configured to perform a light-off operation of the catalytic reactor by controlling at least one light-off parameter and, after light-off occurs, adjusting the at least one light-off parameter to an operating level, wherein the at least one light-off parameter comprises a space velocity through the catalytic reactor.