Abstract:
A constant-current controller that supplies a constant-current to a solenoid driver for use with an electromechanical device. The controller comprises a PCB containing a constant-current control circuit. The circuit comprises a GaNFET primary switch and a secondary switch. The PCB is integrated with and made a part of the solenoid driver. A standard electromechanical device may be converted to a constant-current controlled electromechanical device by exchanging the solenoid driver.
Abstract:
A latch system includes a releasably secured latch or keeper and a solenoid assembly. The solenoid assembly has a solenoid driver coupled to a power supply, a switching circuit connected with the solenoid driver, and a function generator to selectively adjust a frequency of a pick current output from the power supply and provided to the solenoid driver. The frequency is adjusted until the pick current induces a resulting vibration of said latch system sufficient to free a preloaded latch or keeper. The adjusted frequency may be a target frequency or a range of frequencies. Also included may be a preload sensor. When a preload is sensed, the frequency may be adjusted by the function generator until the pick current induces a resulting vibration of said latch system sufficient to free a preloaded latch or keeper.
Abstract:
A novel and useful degauss circuit for use with electromagnetic door locks. The door lock circuit is configured to provide a constant current to the electromagnetic coil load. A pulse width modulation (PWM) controller varies the frequency and/or duty cycle to a switch in series with the coil. Coil current feedback is used to adjust the PWM frequency and/or duty cycle so as to maintain the current through the coil at a certain level to maintain a desired holding force on the door lock. A degauss circuit inline with the current flowing through the coil is provided. When triggered either in an uncontrolled or controlled manner, a series RLC circuit that includes the coil inductance and resistance causes ringing to occur whereby the coil current reverses direction with sufficient amplitude and duration to degauss the coil.
Abstract:
A latch system includes a releasably secured latch or keeper and a solenoid assembly. The solenoid assembly has a solenoid driver coupled to a power supply, a switching circuit connected with the solenoid driver, and a function generator to selectively adjust a frequency of a pick current output from the power supply and provided to the solenoid driver. The frequency is adjusted until the pick current induces a resulting vibration of said latch system sufficient to free a preloaded latch or keeper. The adjusted frequency may be a target frequency or a range of frequencies. Also included may be a preload sensor. When a preload is sensed, the frequency may be adjusted by the function generator until the pick current induces a resulting vibration of said latch system sufficient to free a preloaded latch or keeper.
Abstract:
A constant-current controller that supplies a constant-current to a solenoid driver for use with an electromechanical device. The controller comprises a PCB containing a constant-current control circuit. The circuit comprises a GaNFET primary switch and a secondary switch. The PCB is integrated with and made a part of the solenoid driver. A standard electromechanical device may be converted to a constant-current controlled electromechanical device by exchanging the solenoid driver.
Abstract:
A power control system for use with an electric lock mechanism including an actuator having a coil with a particular coil impedance. The power control system comprises a power supply configured to provide an output voltage having a drive current to the actuator, a credential device powered by the power supply and configured to signal the power supply to provide the output voltage upon receiving an authorized access code, an actuator driver including a multiple-gain current-sensing circuit, and a microcontroller configured to monitor and control the power supply, credential device, actuator driver, and actuator, and determine the impedance of the coil. The microcontroller is populated by a look-up table having performance data for a plurality of coils such that the microcontroller selects a duty ratio to establish the optimum magnitude of drive current to the coil based only on the determined impedance of the coil.
Abstract:
A power control system for use with an electric lock mechanism having an actuator comprises a power supply to output an output voltage to the actuator. A credential device signals the power supply to output the voltage upon receiving an authorized code. A microcontroller controls the power supply, the credential device, and the actuator and may operate in an Access Mode or a Dog Mode. When in Access Mode, the actuator is unpowered and the credential device is powered until an authorized code is received and the power supply powers the actuator. The Dog Mode has an awake mode where the actuator is powered and the credential device is unpowered after the actuator remains in the powered state for a length of time. A sleep mode has the actuator unpowered and the credential device powered until an authorized code is received and the power supply powers the actuator.
Abstract:
A novel and useful degauss circuit for use with electromagnetic door locks. The door lock circuit is configured to provide a constant current to the electromagnetic coil load. A pulse width modulation (PWM) controller varies the frequency and/or duty cycle to a switch in series with the coil. Coil current feedback is used to adjust the PWM frequency and/or duty cycle so as to maintain the current through the coil at a certain level to maintain a desired holding force on the door lock. A degauss circuit inline with the current flowing through the coil is provided. When triggered either in an uncontrolled or controlled manner, a series RLC circuit that includes the coil inductance and resistance causes ringing to occur whereby the coil current reverses direction with sufficient amplitude and duration to degauss the coil.
Abstract:
A power control circuit assembly for an electric door latch mechanism comprises a load control circuit module configured to distribute a DC operating voltage to power an electromechanical door latch mechanism and its associated access control device. An energy storage device such as a rechargeable battery is coupled to the load control circuit module and is configured to deliver a DC voltage to the load control circuit module wherein the DC energy storage device voltage supplies the DC operating voltage. A rectifier is configured to receive an input AC voltage and convert the input AC voltage to an input DC voltage. The input DC voltage is adapted to deliver an energy storage device recharge voltage. An energy storage device voltage detection module is configured to interrogate a DC voltage supplied by the energy storage device.
Abstract:
A constant-current control circuit comprising a switching circuit including a source voltage, and primary and secondary switches is provided. The primary GaNFET switch is connected with a solenoid assembly coil. The secondary switch is connected with the coil which has an inductance. From t0 to ton, the primary GaNFET switch is closed and the secondary switch is open, the source voltage is applied across the coil, and a counter EMF decays until the voltage across the coil equals the source voltage at ton, thereby allowing current to flow through the coil. From ton to T, the primary GaNFET switch is open and the secondary switch is closed, and a positive EMF equal to the source voltage is applied across the coil until the positive EMF decays to zero at T, such that the current continues to flow through the coil without the source voltage being applied across the coil.