摘要:
A superconducting cable is provided. The superconducting cable includes a core part including a former disposed at the center of the core part, one or more superconducting conductive layers with each electric phase disposed at the outside of the former in a radial directions, a insulating layer disposed at the outside of each the conductive layer in a radial direction and a shielding layer disposed at the outermost of the insulating layer; and a cryostat disposed at the outside of the core part in a radial direction with first space being interposed therebetween, having a vacuum part disposed therein and electrically wired to neutral pole (N pole).
摘要:
A terminal apparatus for a superconducting cable system connects an overhead transmission cable or power appliance such as a breaker in an ambient temperature state to a superconducting cable through which power is transmitted at a cryogenic temperature. The terminal apparatus has: a refrigerant tub which is connected to the end of a superconducting cable and is filled with a refrigerant; a vacuum heat insulating container that surrounds the exterior of the refrigerant tub; a current lead having one end connected to the end portion of the superconducting cable and the other end connected to the overhead transmission cable or power appliance through the refrigerant tub and the vacuum heat insulating container; and a superconducting fault current limiter installed at a center portion of the current lead in the interior of the refrigerant tub to limit fault current. As the superconducting fault current limiter is built in the terminal apparatus, the terminal apparatus itself can play the role of a fault current limiter too. Hence, the terminal apparatus can protect a superconducting cable from a fault current directly by limiting the fault current flowed into the superconducting cable when a power transmission fault occurs.
摘要:
A terminal apparatus for a superconducting cable system connects an overhead transmission cable or power appliance such as a breaker in an ambient temperature state to a superconducting cable through which power is transmitted at a cryogenic temperature. The terminal apparatus has: a refrigerant tub which is connected to the end of a superconducting cable and is filled with a refrigerant; a vacuum heat insulating container that surrounds the exterior of the refrigerant tub; a current lead having one end connected to the end portion of the superconducting cable and the other end connected to the overhead transmission cable or power appliance through the refrigerant tub and the vacuum heat insulating container; and a superconducting fault current limiter installed at a center portion of the current lead in the interior of the refrigerant tub to limit fault current. As the superconducting fault current limiter is built in the terminal apparatus, the terminal apparatus itself can play the role of a fault current limiter too. Hence, the terminal apparatus can protect a superconducting cable from a fault current directly by limiting the fault current flowed into the superconducting cable when a power transmission fault occurs.
摘要:
An integral type dielectric filter is disclosed, in which the insertion loss is minimized, and the damping characteristics desired by the user are satisfied. The dielectric filter includes a dielectric block having first and second faces facing toward each other and having a plurality of side faces. A ground electrode is coated on the entire faces of the dielectric block except the first face. A plurality of through holes pass through the first and second faces, with their surfaces being coated with a conductive material. Input and output electrodes are formed on a face of the dielectric block insulatingly from the ground electrode, for forming an electromagnetic coupling with internal electrodes of the plurality of the through holes. At least one metallic coupling region is formed between the input and output electrodes and between the through holes of the first face insulatingly from the ground electrode and from the input and output electrodes to form a capacitive coupling between the input and output electrodes and the through holes. Thus the insertion loss can be decreased compared with the conventional techniques, while improving the damping rate. Further, at least a non-metallic coupling region is formed to realize an inductive coupling, and thus the damping characteristics can be improved at the high frequency side.
摘要:
A method of manufacturing a dielectric filter comprises the steps of: forming a dielectric block; depositing a conductor on the side surfaces and the second surface of the dielectric block, and forming a plurality of resonators, forming input and output terminals on the side surface of the dielectric block, and forming conductive patterns on at least a part of the area of the first surface; and depositing a thermosetting resin on the first surface provided with the conductive patterns, and curing the thermosetting resin. The dielectric filter comprising the protection layer on an open surface prevents defects such as a short circuit generated in a trimming step. The interval between the patterns is reduced to less than 0.04 mm, advantageously facilitating miniaturization of the dielectric filter.