摘要:
There is provided a technique for securing a large examination space in a tunnel type MRI device without inviting increase of manufacturing cost and without significantly reducing irradiation efficiency or uniformity of the irradiation intensity distribution in an imaging region. Between rungs of a partially cylindrical RF coil, which coil corresponds to a cylindrical RF coil of which part is removed, there are disposed half-loops generating magnetic fields, which are synthesized with magnetic fields generated by loops constituted by adjacent rungs of the partially cylindrical RF coil and rings connecting the rungs to generate a circularly polarized or elliptically polarized magnetic field. Further, high-frequency signals of the same reference frequency having a desired amplitude ratio and phase difference are supplied to the partially cylindrical RF coils and half-loops.
摘要:
There is provided a technique for improving quality of images obtained with an MRI apparatus by using the geometric structures of the conventional RF transmission coil and RF reception coil and without increasing burden on patients or MRI technicians. A conductor loop of an RF reception coil disposed between a subject and an RF transmission coil is used also as a loop for magnetic field adjustment in order to shield or enhance a rotating magnetic field B1 generated by the RF transmission coil. Further, the conductor loop operated as a conductor loop for magnetic field adjustment among the conductor loops constituting the RF reception coil is driven so that inhomogeneity of the rotating magnetic field B1 is reduced.
摘要:
Manufacture cost and maintenance cost of RF coils of MRI devices are reduced without any limitation concerning size of the coils. By constituting an antenna device for magnetic resonance imaging devices with a cylindrical outer conductor, a looped ribbon-shaped conductor disposed inside the cylindrical outer conductor along the cylindrical surface, and a feed point for transmission and/or reception between the cylindrical conductor and the ribbon-shaped conductor, and disposing the ribbon-shaped conductor so that length thereof can be readily adjusted, there is provided an antenna device for magnetic resonance imaging devices that generates a magnetic field component perpendicular to the central axis of the cylinder at a desired resonance frequency and shows sensitivity without using capacitors and without being imposed any limitation concerning size in the diametral direction of the cylinder.
摘要:
The present invention provides a technique for maintaining a function for effectively blocking common mode noise with a simple configuration, even in the case where unbalance occurs in characteristic impedance of a coaxial cable in an MRI apparatus, and improving the performance of an RF coil. In a circuit where a balun is established by parallel connection with the coaxial cable, multiple serial resonance circuits having different resonance frequencies are connected in parallel. A value of each constitutional element of each of the serial resonance circuits is adjusted in such a manner that the frequency for blocking the common mode noise of the entire balun falls into a range between the resonance frequencies of these serial resonance circuits.
摘要:
There is provided a technique for improving quality of images obtained with an MRI apparatus by using the geometric structures of the conventional RF transmission coil and RF reception coil and without increasing burden on patients or MRI technicians. A conductor loop of an RF reception coil disposed between a subject and an RF transmission coil is used also as a loop for magnetic field adjustment in order to shield or enhance a rotating magnetic field B1 generated by the RF transmission coil. Further, the conductor loop operated as a conductor loop for magnetic field adjustment among the conductor loops constituting the RF reception coil is driven so that inhomogeneity of the rotating magnetic field B1 is reduced.
摘要:
Manufacture cost and maintenance cost of RF coils of MRI devices are reduced without any limitation concerning size of the coils. By constituting an antenna device for magnetic resonance imaging devices with a cylindrical outer conductor, a looped ribbon-shaped conductor disposed inside the cylindrical outer conductor along the cylindrical surface, and a feed point for transmission and/or reception between the cylindrical conductor and the ribbon-shaped conductor, and disposing the ribbon-shaped conductor so that length thereof can be readily adjusted, there is provided an antenna device for magnetic resonance imaging devices that generates a magnetic field component perpendicular to the central axis of the cylinder at a desired resonance frequency and shows sensitivity without using capacitors and without being imposed any limitation concerning size in the diametral direction of the cylinder.
摘要:
There is provided an RF coil capable of resonating or tuning two frequencies, having uniform spatial sensitivity and having a small spatially occupied volume, especially an RF coil suitable for a high magnetic field MRI apparatus. A coil apparatus is made up of a plurality of linear conductors 200, 201 arranged around a central axis and two ring conductors 202, 203 connected to the respective ends of the plurality of linear conductors 200, 201 and capacitors are inserted in the linear conductors 200, 201 and ring conductors 202, 203. The plurality of linear conductors are made up of conductors 200 located near the central axis and conductors 201 located far from the central axis and the ring conductors 202, 203 have star-like polygonal shape so that the linear conductors are arranged alternately. This structure can realize two tuning modes; a resonance mode similar to a birdcage type resonance mode and a resonance mode which becomes zero (node) in the vicinity of the linear conductor group 200 located near the central axis.
摘要:
There is a provided a technology of receiving a magnetic resonance signal highly sensitively and with a uniform sensitivity distribution in an RF coil of an MRI device which is an RF coil including a switch circuit of switching a circuit configuration. The RF coil of the MRI device of the present invention includes a switch circuit of switching a circuit configuration. Also, the switch circuit switches the circuit configuration by being driven by a control signal received by wireless. For that purpose, the switch circuit includes an antenna of receiving the control signal and a conversion circuit of converting an alternating current voltage received into a direct current voltage.
摘要:
There is provided an RF coil capable of resonating or tuning two frequencies, having uniform spatial sensitivity and having a small spatially occupied volume, especially an RF coil suitable for a high magnetic field MRI apparatus. A coil apparatus is made up of a plurality of linear conductors 200, 201 arranged around a central axis and two ring conductors 202, 203 connected to the respective ends of the plurality of linear conductors 200, 201 and capacitors are inserted in the linear conductors 200, 201 and ring conductors 202, 203. The plurality of linear conductors are made up of conductors 200 located near the central axis and conductors 201 located far from the central axis and the ring conductors 202, 203 have star-like polygonal shape so that the linear conductors are arranged alternately. This structure can realize two tuning modes; a resonance mode similar to a birdcage type resonance mode and a resonance mode which becomes zero (node) in the vicinity of the linear conductor group 200 located near the central axis.
摘要:
An RF coil which is resonant and tuned with two different frequencies, has uniform space sensitivity and occupies less space is provided. The coil is, particularly suited to the high magnetic field MRI apparatus. The coil device is equipped with the multiple number of first coils 200 having the first conducting sections 201 and 202 and the second conducting sections 203 and 204, and the second coils 205 and 206 electrically connected with the end of the multiple number of first coils. In the first conducting sections, two conducting parts 201 and 202 are electrically connected via the first condenser 207, while in the second conducting sections, two conducting parts 203 and 204 are electrically connected via the second condenser 208. And the feeding circuit and/or receiving circuit are connected in parallel with the first condenser at one or two positions. By adjusting the capacity of the first and the second condenser, the RF coil having a uniform sensitivity range at two different frequencies can be configured.