摘要:
There is a provided a technology of receiving a magnetic resonance signal highly sensitively and with a uniform sensitivity distribution in an RF coil of an MRI device which is an RF coil including a switch circuit of switching a circuit configuration. The RF coil of the MRI device of the present invention includes a switch circuit of switching a circuit configuration. Also, the switch circuit switches the circuit configuration by being driven by a control signal received by wireless. For that purpose, the switch circuit includes an antenna of receiving the control signal and a conversion circuit of converting an alternating current voltage received into a direct current voltage.
摘要:
The present invention provides a technique for maintaining a function for effectively blocking common mode noise with a simple configuration, even in the case where unbalance occurs in characteristic impedance of a coaxial cable in an MRI apparatus, and improving the performance of an RF coil. In a circuit where a balun is established by parallel connection with the coaxial cable, multiple serial resonance circuits having different resonance frequencies are connected in parallel. A value of each constitutional element of each of the serial resonance circuits is adjusted in such a manner that the frequency for blocking the common mode noise of the entire balun falls into a range between the resonance frequencies of these serial resonance circuits.
摘要:
The present invention provides a technique for maintaining a function for effectively blocking common mode noise with a simple configuration, even in the case where unbalance occurs in characteristic impedance of a coaxial cable in an MRI apparatus, and improving the performance of an RF coil. In a circuit where a balun is established by parallel connection with the coaxial cable, multiple serial resonance circuits having different resonance frequencies are connected in parallel. A value of each constitutional element of each of the serial resonance circuits is adjusted in such a manner that the frequency for blocking the common mode noise of the entire balun falls into a range between the resonance frequencies of these serial resonance circuits.
摘要:
There is provided a technique for improving quality of images obtained with an MRI apparatus by using the geometric structures of the conventional RF transmission coil and RF reception coil and without increasing burden on patients or MRI technicians. A conductor loop of an RF reception coil disposed between a subject and an RF transmission coil is used also as a loop for magnetic field adjustment in order to shield or enhance a rotating magnetic field B1 generated by the RF transmission coil. Further, the conductor loop operated as a conductor loop for magnetic field adjustment among the conductor loops constituting the RF reception coil is driven so that inhomogeneity of the rotating magnetic field B1 is reduced.
摘要:
There is provided a technique for improving quality of images obtained with an MRI apparatus by using the geometric structures of the conventional RF transmission coil and RF reception coil and without increasing burden on patients or MRI technicians. A conductor loop of an RF reception coil disposed between a subject and an RF transmission coil is used also as a loop for magnetic field adjustment in order to shield or enhance a rotating magnetic field B1 generated by the RF transmission coil. Further, the conductor loop operated as a conductor loop for magnetic field adjustment among the conductor loops constituting the RF reception coil is driven so that inhomogeneity of the rotating magnetic field B1 is reduced.
摘要:
Manufacture cost and maintenance cost of RF coils of MRI devices are reduced without any limitation concerning size of the coils. By constituting an antenna device for magnetic resonance imaging devices with a cylindrical outer conductor, a looped ribbon-shaped conductor disposed inside the cylindrical outer conductor along the cylindrical surface, and a feed point for transmission and/or reception between the cylindrical conductor and the ribbon-shaped conductor, and disposing the ribbon-shaped conductor so that length thereof can be readily adjusted, there is provided an antenna device for magnetic resonance imaging devices that generates a magnetic field component perpendicular to the central axis of the cylinder at a desired resonance frequency and shows sensitivity without using capacitors and without being imposed any limitation concerning size in the diametral direction of the cylinder.
摘要:
Manufacture cost and maintenance cost of RF coils of MRI devices are reduced without any limitation concerning size of the coils. By constituting an antenna device for magnetic resonance imaging devices with a cylindrical outer conductor, a looped ribbon-shaped conductor disposed inside the cylindrical outer conductor along the cylindrical surface, and a feed point for transmission and/or reception between the cylindrical conductor and the ribbon-shaped conductor, and disposing the ribbon-shaped conductor so that length thereof can be readily adjusted, there is provided an antenna device for magnetic resonance imaging devices that generates a magnetic field component perpendicular to the central axis of the cylinder at a desired resonance frequency and shows sensitivity without using capacitors and without being imposed any limitation concerning size in the diametral direction of the cylinder.
摘要:
With minimizing extension of imaging time, the B1 non-uniformity reducing effect of RF shimming is maximized for an imaging section of an arbitrary axis direction and an arbitrary position. B1 distributions are measured for only several sections of one predetermined direction, and a radio frequency magnetic field condition that maximizes the B1 non-uniformity reducing effect for an imaging section of an arbitrary direction and an arbitrary position is calculated from the B1 distribution data. For example, after B1 distributions of only several sections of the AX direction are measured, the optimal radio frequency magnetic field condition for an imaging section of an arbitrary position for the AX direction is obtained by interpolation with optimal radio frequency magnetic field conditions calculated from B1 distributions of two sections near the imaging section, and the optimal radio frequency magnetic field condition for an imaging section of an arbitrary position for the SAG or COR direction is obtained by using only B1 values of a crossing region with the imaging section extracted from the B1 distributions.
摘要:
To provide a technique for sufficiently eliminating magnetic coupling between RF coils and improving image quality when a multi-element multi-tuned RF coil is used as a receive RF coil for an MRI device. In the invention, each of RF coils which constitute a multi-element multi-tuned RF coil which is used as a receive RF coil for an MRI device is provided with an inter-coil magnetic coupling prevention circuit which resonates at each frequency to which each RF coil is tuned and provides a high impedance. The inter-coil magnetic coupling prevention circuit adjusts an inductor and a capacitor so that both of a circuit on the side of a pre-amplifier viewed from both ends of a signal reception circuit and a circuit on the side of the signal reception circuit viewed from both ends of a serial resonance circuit connected to the pre-amplifier resonate at a plurality of frequencies to which the respective RF coils are tuned.
摘要:
An RF coil having at least three different resonance frequencies, wherein one of the resonance frequencies is adjusted to be a frequency fA of a magnetic resonance signal generated by a test subject, and the coil is adjusted so that ratio of difference between the frequency fA and a first frequency fB lower than fA and nearest to fA among the resonance frequencies (fA−fB), and difference between the frequency fA and a second resonance frequency fC higher than fA and nearest to the frequency fA among the resonance frequencies (fC−fA), should be from 0.5 to 2.0. There is provided a technique for receiving magnetic resonance signals always with high detection efficiency by an RF coil of an MRI apparatus even if significant loss is caused in the RF coil, or test subject is changed.