Abstract:
The present invention provides a decoding method, a decoding apparatus, and a communications system, which implement multi-level coding in a manner combining soft-decision error correction coding and hard-decision error correction coding, implement multi-level decoding in a manner combining soft-decision error correction decoding and hard-decision error correction decoding, so as to integrate advantages of the two manners: compared with a manner in which soft-decision error correction coding and decoding are performed on multiple levels, a manner in which soft-decision error correction coding and decoding are performed on only one level reduces system complexity and resource overhead; and performing hard-decision error correction coding and decoding on other levels on a basis of performing soft-decision error correction coding and decoding on one level ensures gain performance, thereby meeting a gain requirement of a high-speed optical transmission system.
Abstract:
Embodiments of the present invention disclose a virtual machine migration management method, where the method includes: calculating, according to migration parameters of a to-be-migrated virtual machine, migration duration time required for migrating the to-be-migrated virtual machine from a source computing node to a destination computing node, where the migration parameters include an allocated memory size, a memory change rate, and migration network bandwidth that are of the to-be-migrated virtual machine; separately acquiring current available migration duration time of the source computing node and current available migration duration time of the destination computing node; and, if neither the current available migration duration time of the source computing node nor the current available migration duration time of the destination computing node is less than the migration duration time, determining to migrate the to-be-migrated virtual machine from the source computing node to the destination computing node.
Abstract:
The present invention provides a decoding method, a decoding apparatus, and a communications system, which implement multi-level coding in a manner combining soft-decision error correction coding and hard-decision error correction coding, implement multi-level decoding in a manner combining soft-decision error correction decoding and hard-decision error correction decoding, so as to integrate advantages of the two manners: compared with a manner in which soft-decision error correction coding and decoding are performed on multiple levels, a manner in which soft-decision error correction coding and decoding are performed on only one level reduces system complexity and resource overhead; and performing hard-decision error correction coding and decoding on other levels on a basis of performing soft-decision error correction coding and decoding on one level ensures gain performance, thereby meeting a gain requirement of a high-speed optical transmission system.
Abstract:
The embodiments of the present invention provide an encoding and decoding method and device. The encoding method includes: equally dividing input K-bit information into n blocks, where k1, k2, . . . , and kn are used to represent each block of information; combining a kith block of information with n−1 encoded code words Vi−1, Vi−2, . . . , and Vi−n+1 of ki−1th, ki−2th, . . . , and ki−n+1th blocks, to obtain a code word to be encoded, where when a sequence number of an encoded code word is smaller than or equal to 0, the encoded code word is history information; performing, by using an LDPC check matrix, encoding on the code word to be encoded, where a generated check bit and the kith block of information form an encoded code word Vi; and outputting encoded code words V1, V2, . . . , and Vn. The embodiments of the present invention are applied in encoding and decoding.
Abstract:
An apparatus and a method for estimating a traffic rate between a virtual machine pair includes, when a rate of traffic sent by a virtual machine vm-x1 to a virtual machine vm-y1 is estimated, obtaining at least rates of sending traffic by N21 virtual machines deployed in N2 physical hosts and including the virtual machine vm-x1, rates of traffic sent by N1 switching devices to N4 switching devices, rates of receiving traffic of N31 virtual machines deployed in N3 physical hosts and including the virtual machine vm-y1, and rates of outgoing traffic of the N4 switching devices.
Abstract:
An apparatus and a method for estimating a traffic rate between a virtual machine pair includes, when a rate of traffic sent by a virtual machine vm-x1 to a virtual machine vm-y1 is estimated, obtaining at least rates of sending traffic by N21 virtual machines deployed in N2 physical hosts and including the virtual machine vm-x1, rates of traffic sent by N1 switching devices to N4 switching devices, rates of receiving traffic of N31 virtual machines deployed in N3 physical hosts and including the virtual machine vm-y1, and rates of outgoing traffic of the N4 switching devices.
Abstract:
Embodiments relate to the communications field, and provide an adaptive modulation and coding method, apparatus, and system. The method includes: obtaining to-be-processed data; obtaining channel information corresponding to the to-be-processed data, and determining a modulation mode according to the channel information. The method also includes determining first data and second data from the to-be-processed data according to the modulation mode; performing soft decision forward error correction FEC coding on the first data to obtain a first bit stream. The method also includes obtaining a second bit stream according to the second data, and modulating the first bit stream and the second bit stream according to a constellation mapping rule; and sending modulated data.
Abstract:
The present invention discloses a coding and decoding method, apparatus, and system for forward error correction, and pertains to the field of communications. The method includes: determining check matrix parameters of time-varying periodic LDPC convolutional code according to performance a transmission system, complexity of the transmission system, and a synchronization manner for code word alignment, constructing a QC-LDPC check matrix according to the determined check matrix parameters, and obtaining a check matrix (Hc) of the time-varying periodic LDPC convolutional code according to the QC-LDPC check matrix; de-blocking, according to requirements of the Hc, data to be coded, and coding data of each sub-block according to the Hc, so as to obtain multiple code words of the LDPC convolutional code; and adding the multiple code words of the LDPC convolutional code in a data frame and sending the data frame.
Abstract:
Embodiments of the present invention provide a data transmitter, a data receiver, and a frame synchronization method. The data transmitter includes a coding module and a processing module. The coding module is configured to perform forward error correction FEC coding on sent data to obtain an FEC code word, and to output the FEC code word and an indication signal for indicating a boundary position of the FEC code word to the processing module. The processing module is configured to insert a training sequence into the FEC code word according to the indication signal, so that a data receiver determines the boundary position of the FEC code word according to the training sequence.
Abstract:
The embodiments of the present invention provide an encoding and decoding method and device. The encoding method includes: equally dividing input K-bit information into n blocks, where k1, k2, . . . , and kn are used to represent each block of information; combining a kith block of information with n−1 encoded code words Vi−1, Vi−2, . . . , and Vi−n+1 ki−1th, and ki−2th, . . . , and ki−n+1th blocks, to obtain a code word to be encoded, where when a sequence number of an encoded code word is smaller than or equal to 0, the encoded code word is history information; performing, by using an LDPC check matrix, encoding on the code word to be encoded, where a generated check bit and the kith block of information form an encoded code word Vi; and outputting encoded code words V1, V2, . . . , and Vn. The embodiments of the present invention are applied in encoding and decoding.