Abstract:
According to some aspects, a portable magnetic resonance imaging system is provided, comprising a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging. The magnetics system comprises a permanent B0 magnet configured to produce a B0 field for the magnetic resonance imaging system, and a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of emitted magnetic resonance signals, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a base that supports the magnetics system and houses the power system, the base comprising at least one conveyance mechanism allowing the portable magnetic resonance imaging system to be transported to different locations. According to some aspects, the base has a maximum horizontal dimension of less than or equal to approximately 50 inches. According to some aspects, the portable magnetic resonance imaging system weighs less than 1,500 pounds. According to some aspects, the portable magnetic resonance imaging system has a 5-Gauss line that has a maximum dimension of less than or equal to five feet.
Abstract:
According to some aspects, a portable magnetic resonance imaging system is provided. The portable magnetic resonance imaging system comprises a B0 magnet configured to produce a B0 magnetic field for an imaging region of the magnetic resonance imaging system, a noise reduction system configured to detect and suppress at least some electromagnetic noise in an operating environment of the portable magnetic resonance imaging system, and electromagnetic shielding provided to attenuate at least some of the electromagnetic noise in the operating environment of the portable magnetic resonance imaging system, the electromagnetic shielding arranged to shield a fraction of the imaging region of the portable magnetic resonance imaging system. According to some aspects, the electromagnetic shielding may be configurable to providing a variable amount of shielding for the imaging region.
Abstract:
According to some aspects, a method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
Abstract:
In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
Abstract:
In some aspects, a method of operating a magnetic resonance imaging system comprising a B0 magnet and at least one thermal management component configured to transfer heat away from the B0 magnet during operation is provided. The method comprises providing operating power to the B0 magnet, monitoring a temperature of the B0 magnet to determine a current temperature of the B0 magnet, and operating the at least one thermal management component at less than operational capacity in response to an occurrence of at least one event.
Abstract:
According to some aspects, a laminate panel is provided. The laminate panel comprises at least one laminate layer including at least one non-conductive layer and at least one conductive layer patterned to form at least a portion of a B0 coil configured to contribute to a B0 field suitable for use in low-field magnetic resonance imaging (MRI).
Abstract:
An apparatus for providing a B0 magnetic field for a magnetic resonance imaging system. The apparatus includes at least one permanent B0 magnet to contribute a magnetic field to the B0 magnetic field for the MRI system and a ferromagnetic frame configured to capture and direct at least some of the magnetic field generated by the B0 magnet. The ferromagnetic frame includes a first post having a first end and a second end, a first multi-pronged member coupled to the first end, and a second multi-pronged member coupled to the second end, wherein the first and second multi-pronged members support the at least one permanent B0 magnet.
Abstract:
Aspects relate to providing radio frequency components responsive to magnetic resonance signals. According to some aspects, a radio frequency component comprises at least one coil having a conductor arranged in a plurality of turns oriented about a region of interest to respond to corresponding magnetic resonant signal components. According to some aspects, the radio frequency component comprises a plurality of coils oriented to respond to corresponding magnetic resonant signal components. According to some aspects, an optimization is used to determine a configuration for at least one radio frequency coil.
Abstract:
A method of producing a permanent magnet shim configured to improve a profile of a B0 magnetic field produced by a B0 magnet is provided. The method comprises determining deviation of the B0 magnetic field from a desired B0 magnetic field, determining a magnetic pattern that, when applied to magnetic material, produces a corrective magnetic field that corrects for at least some of the determined deviation, and applying the magnetic pattern to the magnetic material to produce the permanent magnet shim. According to some aspects, a permanent magnet shim for improving a profile of a B0 magnetic field produced by a B0 magnet is provided. The permanent magnet shim comprises magnetic material having a predetermined magnetic pattern applied thereto that produces a corrective magnetic field to improve the profile of the B0 magnetic field.
Abstract:
According to some aspects, a low-field magnetic resonance imaging system is provided. The low-field magnetic resonance imaging system comprises a magnetics system having a plurality of magnetics components configured to produce magnetic fields for performing magnetic resonance imaging, the magnetics system comprising, a B0 magnet configured to produce a B0 field for the magnetic resonance imaging system at a low-field strength of less than 0.2 Tesla (T), a plurality of gradient coils configured to, when operated, generate magnetic fields to provide spatial encoding of magnetic resonance signals, and at least one radio frequency coil configured to, when operated, transmit radio frequency signals to a field of view of the magnetic resonance imaging system and to respond to magnetic resonance signals emitted from the field of view, a power system comprising one or more power components configured to provide power to the magnetics system to operate the magnetic resonance imaging system to perform image acquisition, and a power connection configured to connect to a single-phase outlet to receive mains electricity and deliver the mains electricity to the power system to provide power needed to operate the magnetic resonance imaging system. According to some aspects, the power system operates the low-field magnetic resonance imaging system using an average of less than 1.6 kilowatts during image acquisition.