Abstract:
An example welding-type power supply includes: power conversion circuitry configured to convert input power to welding-type power, and to output the welding-type power via a welding-type circuit; a temperature sensor configured to measure a temperature of at least one component of the welding-type power supply; and stray current detection circuitry configured to detect stray welding-type current based on the measured temperature of the at least one component.
Abstract:
A method and apparatus for providing welding-type power is disclosed. The apparatus includes an input circuit, a dc bus, an output circuit, and a control module. The input circuit receives power and provides an intermediate signal to the bus. The output circuit receives the dc bus and provides an ac welding-type output. The output circuit includes a half-bridge output inverter with at least first and second switches. The output inverter further includes an output control circuit. The output control circuit provides freewheeling paths that includes control switches, the output, antiparallel diodes. The control module has a four quadrant control module that provides control signals to the half bridge output inverter and provides modulating control signals to the first and second output control switches. The modulating signals cause the output control switches to be turned on and off multiple times to control a rate of change of output current.
Abstract:
A method and apparatus for providing welding type power is disclosed. At least one circuit board is used that is partially potted using a potting barrier affixed to the circuit board. The partially potted portion can be inside an enclosed air flow space.