摘要:
Briefly, in accordance with one or more embodiments, count rates may be obtained from one or more subpixels for a given pixel in an imaging system detector. Count rates may be obtained from individual subpixels, or may be from electronically binned subpixels at least in part in various subpixel arrangements where a selected subpixel arrangement may be adaptively set according to a detected count rate. For lower count rates, two or more subpixels may be electronically binned together and the counts may be obtained from the binned subpixels, for example to mitigate a charge sharing effect. For higher count rates, the count rates of a greater number of subpixels may be individually obtained, for example to mitigate a pulse pile-up effect. Detective quantum efficiency may be optimized over a wider range of photon flux rate via the adaptive subpixel arrangement.
摘要:
A detector module for a CT imaging system includes a scintillator to convert x-rays to optical photons. The scintillator is optically coupled to a solid-state photomultiplier with internal gain to receive the optical photons and convert them into a corresponding electrical signal output.
摘要:
A CT detector includes a plurality of metallized anodes with each metallized anode separated from another metallized anode by a gap. A direct conversion material is electrically coupled to the plurality of metallized anodes and has a charge sharing region in which an electrical charge generated by an x-ray impinging the direct conversion material is shared between at least two of the plurality of metallized anodes. An x-ray attenuating material is positioned to attenuate x-rays directed toward the charge sharing region.
摘要:
The present disclosure relates to the correction of charge loss in a radiation detector. In one embodiment, correction factors for charge loss may be determined based on depth of interaction and lateral position within a radiation detector of a charge creating event. The correction factors may be applied to subsequently measured signals to correct for the occurrence of charge loss in the measured signals.
摘要:
A CT detector includes a direct conversion material configured to generate electrical charge upon reception of x-rays, a plurality of metallized anodes configured to collect electrical charges generated in the direct conversion material, at least one readout device, and a redistribution layer having a plurality of electrical pathways configured to route the electrical charges from the plurality of metallized anodes to the at least one readout device. A plurality of switches is coupled to the plurality of electrical pathways between the plurality of metallized anodes and the at least one readout device, wherein each of the plurality of switches includes an input line electrically coupled to one of the plurality of metallized anodes, a first output node electrically coupled to the at least one readout device, and a second output node electrically coupled to at least one other switch of the plurality of switches.
摘要:
A radiation detector includes at least one multiple channel pixellated detector driven via a plurality of pixellated anode electrodes and at least one planar cathode electrode. Each detector is configured to reduce the number of active pixellated anode electrodes until a rate of events detected via at least one corresponding planar cathode electrode exceeds a preset threshold above a background count rate within a predetermined time period.
摘要:
A diagnostic imaging system includes an x-ray source that emits a beam of x-ray energy toward an object to be imaged and an energy discriminating (ED) detector that receives the x-ray energy emitted by the x-ray energy source. The ED detector includes a first layer having a first thickness, wherein the first layer comprises a semiconductor configurable to operate in at least an integrating mode and a second layer having a second thickness greater than the first thickness, and configured to receive x-rays that pass through the first layer. The system further includes a data acquisition system (DAS) operably connected to the ED detector and a computer that is operably connected to the DAS. The computer is programmed to identify saturated data in the second layer and substitute the saturated data with non-saturated data from a corresponding pixel in the first layer.
摘要:
An adaptive data acquisition circuit (26) includes an amplifier (14) for amplifying electrical pulses generated by a detector (12) responsive to energy incident at the detector. The adaptive data acquisition circuit also includes a counting circuit (28) for counting amplified electrical pulses generated by the amplifier. In addition, the adaptive data acquisition circuit includes a digital logic circuit (30) for determining a pulse parameter indicative of a pulse rate and an amount of energy present in the amplified electrical pulses and for generating a control signal (34) responsive to the pulse parameter for controlling an operating parameter of the data acquisition circuit.
摘要:
A computed tomography detector module is presented. The detector module includes a substrate having a topside and a bottom side. Additionally, the detector module includes a plurality of detector layers disposed on the top side of the substrate in a direction that is substantially orthogonal to the substrate, where each of the plurality of detector layers comprises a direct conversion material configured to absorb radiation, and where each of the plurality of detector layers comprises a first side and a second side. Further, the detector module includes a plurality of pixelated anode contacts is disposed on the first side of each of the plurality of detector layers. Also, the detector module includes a common cathode contact is disposed on the second side of each of the plurality of detector layers.
摘要:
A radiation detector includes at least one multiple channel pixelated detector driven via a plurality of pixelated anode electrodes and at least one planar cathode electrode. Each detector is configured to reduce the number of active pixelated anode electrodes until a rate of events detected via at least one corresponding planar cathode electrode exceeds a preset threshold above a background count rate within a predetermined time period.