摘要:
Different types of cardiac arrhythmia are classified based on the morphology of the arrhythmic beats. Cardiac beats associated with an arrhythmic episode are compared to a plurality of representative beat morphologies, each representative beat morphology characterizing a type of arrhythmia of the heart. An arrhythmic episode may be classified as a particular type of arrhythmia if the morphology of the arrhythmic cardiac beats matches a representative beat morphology characterizing the particular type of arrhythmia. An appropriate therapy for the particular type of arrhythmia may be selected based on the arrhythmia classification. A particular type of arrhythmia may be associated with one or more therapies used to treat the arrhythmia. The therapy used to treat the arrhythmia may comprise a therapy identified as a previously successful therapy.
摘要:
Methods and devices for classifying a cardiac response to pacing involve establishing a plurality of classification windows relative to and following a pacing pulse. One or more characteristics of a cardiac signal sensed following the pacing pulse are detected within one or more particular classification windows. The characteristics may be compared to one or more references. Classification of the cardiac response may be performed based on the comparison of the one or more characteristics to the one or more references and the particular classification windows in which the one or more characteristics are detected.
摘要:
A method and system for verifying capture in the heart involves the use of pacing artifact templates. One or more pacing artifact templates characterizing a post pace artifact signal associated with a particular pace voltage or range of voltages are provided. A pacing artifact template is canceled from a cardiac signal sensed following a pacing pulse. Capture is detected by comparing the pacing artifact canceled cardiac signal to an evoked response reference. Fusion/pseudofusion detection involves determining a correlation between a captured response template and a sensed cardiac signal.
摘要:
Methods and systems for detecting capture using pacing artifact cancellation are described. One or more pacing artifact templates are provided and a cardiac signal is sensed in a cardiac verification window. Each of the pacing artifact templates may characterize the pacing artifact associated with a particular pacing energy level, for example. A particular pacing artifact template is canceled from the cardiac signal. Capture is determined using the pacing artifact canceled cardiac signal. Detection of fusion/pseudofusion beats may be accomplished by comparing a cardiac signal to a captured response template.
摘要:
This document discusses, among other things, a combination pacer/defibrillator that is tailored for bradycardia patients. In one example, its shock-delivery specificity exceeds its sensitivity to shockable ventricular tachyarrhythmias. In another example, its specificity exceeds 95%, or 99%, or even 99.5%. Sensitivity is programmed to a high desired sensitivity value, but only if it can be done without decreasing the specificity below the desired specificity threshold value. This can be conceptualized as “avoiding at all costs” delivering false shocks, even at the expense of failing to deliver a shock to a treatable ventricular tachyarrhythmia. Specificity enhancements include, among other things, inhibiting shock delivery when the patient is breathing or not supine, using multiple channels or a high rate VT/VF detection threshold. The present pacer/defibrillator device could potentially save the lives of bradyarrhythmia patients who are not presently clinically indicated for a defibrillator/pacer, but who have an increased risk of sudden cardiac death due to one or more risk factors.
摘要:
A template selection method involves providing a plurality of templates representing a type of cardiac event. One or more characteristics of each template are evaluated. The evaluations are compared and a template is selected as a current template based on the comparison.
摘要:
Methods and devices for classifying a cardiac response to pacing involve establishing a plurality of classification windows relative to and following a pacing pulse. One or more characteristics of a cardiac signal sensed following the pacing pulse are detected within one or more particular classification windows. The characteristics may be compared to one or more references. Classification of the cardiac response may be performed based on the comparison of the one or more characteristics to the one or more references and the particular classification windows in which the one or more characteristics are detected.
摘要:
Methods and systems are described that involve synchronized ventricular pacing that promotes sensing of atrial events. The atrioventricular pacing delay is modified based on characteristics of previously sensed atrial events. The modified AV delay is implemented relative to a first atrial event. A second AV delay is implemented relative to a second atrial event if the second atrial event is sensed during the modified AV delay. A ventricular pacing pulse is delivered following the second AV delay.
摘要:
Different types of cardiac arrhythmia are classified based on the morphology of the arrhythmic beats. Cardiac beats associated with an arrhythmic episode are compared to a plurality of representative beat morphologies, each representative beat morphology characterizing a type of arrhythmia of the heart. An arrhythmic episode may be classified as a particular type of arrhythmia if the morphology of the arrhythmic cardiac beats matches a representative beat morphology characterizing the particular type of arrhythmia. An appropriate therapy for the particular type of arrhythmia may be selected based on the arrhythmia classification. A particular type of arrhythmia may be associated with one or more therapies used to treat the arrhythmia. The therapy used to treat the arrhythmia may comprise a therapy identified as a previously successful therapy.
摘要:
A method and system for generating a characterization of one beat of a patient's supraventricular rhythm (SVR) involves performing such characterization while the heart is being paced. During SVR characterization, various pacing parameters are modified and the patient's supraventricular rhythm is characterized while the pacing parameters are modified. The SVR characterization process is effective in single and multiple chamber pacing modes.