Abstract:
According to an aspect, an imaging display system includes an imaging device, a display device, and a processing device. The imaging device includes a rolling shutter image sensor that takes an image. The display device displays the image. The processing device performs image processing on the image. The imaging display system is mounted on a movable body that moves in a certain direction on a reference plane. The imaging device is arranged at an angle with respect to a moving direction of the movable body on the reference plane. An imaging scanning direction of the image on the image sensor is horizontal with respect to the reference plane. A display scanning direction of the image displayed on the display device coincides with the imaging scanning direction.
Abstract:
An image pickup device capable of stably detecting an object irrespective of use conditions while reducing manufacturing costs is provided. When illumination light from a backlight is emitted to a proximity object from an I/O display panel, an electric charge is accumulated in image pickup pixels in accordance with total light amount, including reflected light originating from the backlight and external environment light. Moreover, when the illumination light is not emitted, a discharging electric charge is released from the image pickup pixels in accordance with the amount of environment light. Thereby, an environment light component is subtracted from an image pickup signal obtained from each of the image pickup pixels, so object information about the proximity object is obtained without influence of the environment light. Moreover, in a light reception drive circuit, fewer frame memories for producing a picked-up image from the image pickup signal are necessary.
Abstract:
According to one embodiment, a specimen detection device includes a light source, a filter, a sensor, and a controller. The light source executes a first operation and a second operation. The first operation causes a first light of a first peak wavelength to be incident on a specimen. The second operation causes a second light of a second peak wavelength to be incident on the specimen. The filter attenuates the first and second lights and transmits at least a portion of a third light and at least a portion of a fourth light. The third light is emitted from the specimen. The fourth light is emitted from the specimen. The sensor outputs a first signal and a second signal. The first signal corresponds to the third. The second signal corresponds to the fourth light. The controller calculates a result value by processing the first and second signals.