Abstract:
First electrodes are formed on an insulation surface in such a manner that the adjacent first electrodes are connected in a first direction and are separated in a second direction intersecting the first direction. Second electrodes are formed on an insulation surface in such a manner that the adjacent second electrodes are connected in the second direction and are separated in the first direction. Third electrodes are formed in regions in which the third electrodes overlap with the first electrodes and do not overlap with the second electrodes in such a manner that the adjacent third electrodes are connected in the second direction and are separated in the first direction. A flexible insulation layer is formed between the first electrodes and the third electrodes. An area of each of the third electrodes is less than an area of each of the first electrodes.
Abstract:
An object of the present invention is to improve yield when manufacturing a display device. A method of manufacturing a display device for displaying an image using a display element includes exposing a first surface of a glass substrate o an aqueous solution containing hydrogen fluoride, forming an organic resin film having a polar group above the first surface of the glass substrate, forming a layer including a display element for displaying an image above the organic resin film, and bonding an opposing substrate so as to cover the display element.
Abstract:
A display device is provided with: a first display panel for displaying an image; and a second display panel for forming a parallax by controlling a refractive index in a form of cylindrical lenses that run in a first direction and are aligned in a second direction, wherein the second display panel is provided with a first substrate having a first electrode and a second substrate having second electrodes, the first substrate and the second substrate face each other with a liquid crystal layer in between so as to provide a liquid crystal display panel, and a thickness of the liquid crystal layer is equal to or smaller than such a thickness that makes a rotational angle in a direction of a deflection angle of liquid crystal directors in a center portion of the liquid crystal layer in the direction of the thickness be 90° during three-dimensional display.
Abstract:
First electrodes are formed on an insulation surface in such a manner that the adjacent first electrodes are connected in a first direction and are separated in a second direction intersecting the first direction. Second electrodes are formed on an insulation surface in such a manner that the adjacent second electrodes are connected in the second direction and are separated in the first direction. Third electrodes are formed in regions in which the third electrodes overlap with the first electrodes and do not overlap with the second electrodes in such a manner that the adjacent third electrodes are connected in the second direction and are separated in the first direction. A flexible insulation layer is formed between the first electrodes and the third electrodes. An area of each of the third electrodes is less than an area of each of the first electrodes.
Abstract:
A display device includes a display region including a plurality of pixels and a separation region between each of the plurality of pixels and a touch sensor overlapping the display region. The touch sensor includes a sensor electrode and an insulating layer. The sensor electrode includes a first sensor electrode pattern overlapping at least one of the plurality of pixels and a second sensor electrode pattern overlapping at least a part of the separation region. The insulating layer is arranged between the first sensor electrode pattern and the second sensor electrode pattern, and overlaps the first sensor electrode pattern, and covers a first region of the first sensor electrode pattern. The second sensor electrode pattern is arranged on the insulating layer and the first sensor electrode pattern, and connected to a second region of the first sensor electrode pattern.
Abstract:
An organic EL display device according to an embodiment of the present invention includes: a base material; a plurality of pixels located on the base material; a lower electrode included in each of the plurality of pixels; a bank defining the plurality of pixels; an organic material layer disposed on the lower electrode and on the bank and including a plurality of layers; and an upper electrode disposed on the organic material layer. In a first layer included in the organic material layer, a non-existent region where the first layer is cut off or has a thickness thinner than that of another region is formed, and the non-existent region is formed in at least a portion of an effective region of the pixel surrounded by the bank.
Abstract:
There is provided a touch or proximity sensor including a plurality of first touch electrodes extending in a first direction and being arranged in a second direction intersecting the first direction, and a plurality of second touch electrodes extending in the second direction, being arranged in the first direction, and insulated from the plurality of first touch electrodes, in which at least one of the plurality of first touch electrodes and at least one of the plurality of second touch electrodes respectively have concave surface on a detection surface side.
Abstract:
First electrodes are formed on an insulation surface in such a manner that the adjacent first electrodes are connected in a first direction and are separated in a second direction intersecting the first direction. Second electrodes are formed on an insulation surface in such a manner that the adjacent second electrodes are connected in the second direction and are separated in the first direction. Third electrodes are formed in regions in which the third electrodes overlap with the first electrodes and do not overlap with the second electrodes in such a manner that the adjacent third electrodes are connected in the second direction and are separated in the first direction. A flexible insulation layer is formed between the first electrodes and the third electrodes. An area of each of the third electrodes is less than an area of each of the first electrodes.
Abstract:
A liquid crystal display device is configured to form a three dimensional image on the vertical view by applying a first voltage between a narrow electrode on the first substrate and a wide electrode on the second substrate, and a second voltage lower than the first voltage between the wide electrode on the first substrate and the wide electrode on the second substrate, and to form a three dimensional image on the horizontal view by applying the first voltage between the wide electrode on the first substrate and a narrow electrode on the second substrate, and the second voltage between the wide electrode on the first substrate and the wide electrode on the second substrate so as to reduce generation of domain in the horizontal electric field.
Abstract:
A liquid crystal material is driven in a twisted nematic mode so that while liquid crystal molecules lose, on a stripe electrode, rotary power toward a direction along an electric field by a voltage applied between the stripe electrode and a second electrode and form, in a region between the adjacent stripe electrodes, refractive index distribution of a lenticular lens that includes a cylindrical lens in which a cylindrical axis is arranged in a first direction. The cylindrical lens faces at least two rows of pixels, and has an effective refractive index for causing light from the at least two rows of pixels to advance in separating directions from each other after emission from a second polarizing plate. A distance d of a cell gap and an interval s between the adjacent stripe electrodes satisfy the relation of 3.5≦s/d≦7.
Abstract translation:以扭曲向列模式驱动液晶材料,使得液晶分子在条状电极上通过施加在条状电极和第二电极之间的电压而沿着电场的方向旋转,形成在 相邻条状电极之间的区域,包括柱面透镜的柱状透镜的折射率分布,其中圆柱形轴线沿第一方向排列。 柱面透镜面向至少两行像素,并且具有有效折射率,用于使来自至少两排像素的光在从第二偏振片发射之后彼此分离方向前进。 单元间隙的距离d和相邻条形电极之间的间隔s满足关系3.5≦̸ s / d≦̸ 7。