摘要:
An invasive device which is intended to cooperate with a magnetic resonance imaging apparatus is provided with an RF coil which is situated near a distal part of the invasive device. The RF coil is used so as to visualize the position of a distal end of the invasive device, introduced into an object, in an image of the object. Current induced by an RF field to be generated by the magnetic resonance imaging apparatus develops heat in the electric connection between the RF coil and a control unit, which may be annoying to a patient. In order to counteract the development of heat in the invasive device, the invasive device is provided with a hollow carrier. The electric connection extends through said carrier which is provided with an electrically conductive shield with an additional resistance.
摘要:
A current correction circuit (200) has an input (201) and includes: a first controllable current source (220) having an input connected to the circuit input for drawing a first current (I 220) from the circuit input; a differentiator (210) having an input coupled to the circuit input and having an output coupled to the first current source; and/or a second controllable current source (240) having an input connected to the circuit input for drawing a second current (I 240) from the circuit input; a voltage comparator (230) having a first input coupled to the circuit input (201), having a second input coupled to receive a reference signal (Vref), and having an output coupled to the second current source. The circuit is responsive to voltage changes by drawing first current pulses (221) from the circuit input, and/or to low voltages by drawing second current pulses (241) from the circuit input.
摘要:
A dimmable LED driver circuit comprises a resonant DC-DC converter coupled to an output circuit. The converter comprises a half bridge or full bridge switching circuit coupled to a resonant circuit. An output of the resonant circuit is rectified and fed to the output circuit. The output circuit may comprise at least one LED series or shunt switch for switching an LED unit on and off. A control circuit controls the switches of the switching circuit at a variable switching frequency. The control circuit is also configured for controlling the switching circuit for amplitude modulating the converter and for pulse-width modulating the converter at a first pulse-width modulation frequency lower than the switching frequency. The control circuit is may further be configured for controlling the switching of the LED switch at a second pulse-width modulation frequency lower than the switching frequency.
摘要:
A dimmable LED driver circuit comprises a resonant DC-DC converter coupled to an output circuit. The converter comprises a half bridge or full bridge switching circuit coupled to a resonant circuit. An output of the resonant circuit is rectified and fed to the output circuit. The output circuit may comprise at least one LED series or shunt switch for switching an LED unit on and off. A control circuit controls the switches of the switching circuit at a variable switching frequency. The control circuit is also configured for controlling the switching circuit for amplitude modulating the converter and for pulse-width modulating the converter at a first pulse-width modulation frequency lower than the switching frequency. The control circuit is may further be configured for controlling the switching of the LED switch at a second pulse-width modulation frequency lower than the switching frequency.
摘要:
A power supply circuit has an LLC converter stage for converting a DC voltage input into a DC voltage output, and at least one hysteretic converter stage. Each hysteretic converter stage has a DC voltage input coupled to the DC voltage output of the LLC converter stage, and a DC current output. The LLC converter stage lacks a feedback control, and is operated at its load independent point. A ripple on the DC voltage output of the LLC converter does not affect the output current of the hysteretic converter stage. The stable DC current output of the hysteretic converter stage is coupled to a load having one or more LED strings.
摘要:
A self-oscillating switch circuit for amplitude modulation dimming for dimming a LED load. The self-oscillating switch circuit comprises a high-power input terminal (S2) for supplying a first power to the load and a low-power input terminal (S1) for supplying a second power to the load. The switch circuit further comprises a power switch semi-conductor device (Q1) configured for controlling a load current from at least one of the high-power input terminal (S2) and the low-power input terminal (S1) to the output terminal. A control semi-conductor device (Q2) is configured to control the power switch semi-conductor device (Q1) in response to a sensing voltage. The sensing circuit comprises a first sensing resistor (R1A) and a second sensing resistor (R1B) for generating the sensing voltage such that a load current has a predetermined first peak current level corresponding to the first power, when power is supplied to the high-power input terminal, and the load current has a predetermined second peak current level corresponding to the second power when power is supplied to the low-power input terminal.
摘要:
In order to detect a defective light source, such as a LED coupled to a DC-DC converter circuit for receiving a power signal, an outage detection circuit comprises a top voltage detector coupled to the LED for detecting a voltage across the LED. The top voltage detector has an top voltage terminal for supplying a top voltage signal. The detection circuit further comprises a differential amplifier coupled to the top voltage terminal for receiving the top voltage signal as a first input signal and coupled to a reference voltage terminal. The reference voltage terminal is configured to supply a reference voltage as a second input signal. The differential amplifier comprises an output terminal for supplying an outage detection signal.
摘要:
A self-oscillating switch circuit for use in a switching DC-DC converter that is enabled to use amplitude modulation dimming for dimming a load such as a LED is provided. The dimming may be used to provide two or more distinct light output levels, which may be used in automotive combined tail and break lighting, for example. The self-oscillating switch circuit comprises an output terminal (Ton P1), a high-power input terminal (S2) for supplying a first power to the load and a low-power input terminal (S1) for supplying a second power to the load. The second power is lower than the first power The switch circuit further comprises a power switch semi-conductor device (Q1) configured for controlling a load current from at least one of the high-power input terminal (S2) and the low-power input terminal (S1) to the output terminal. A control semi-conductor device (Q2) is coupled to the power switch semi-conductor device (Q1) for supplying a control signal for controlling switching of the power switch semi-conductor device (Q1). A sensing circuit is configured to generate a sensing voltage. The control semi-conductor device (Q2) is configured to control the power switch semi-conductor device (Q1) in response to the sensing voltage. The sensing circuit comprises a first sensing resistor (R1A) and a second sensing resistor (R1B) for generating the sensing voltage such that a load current has a predetermined first peak current level corresponding to the first power, when power is supplied to the high-power input terminal, and the load current has a predetermined second peak current level corresponding to the second power when power is supplied to the low-power input terminal.
摘要:
Magnetic resonance includes predetermined frequency and which is connected, via a connection circuit (14), to a transmission and/or receiving device (11, 13) for RF signals, said connection circuit comprising a coaxial cable (41) having a central conductor (45) and a conductor sheath (47) which coaxially encloses the central conductor. Over at least a part of its length the coaxial cable (41) is enclosed, by a tubular conductor (49) having first and second ends (51, 53), a dielectric (50) being present between the conductor sheath (47) and the tubular conductor. The tubular conductor (49) has an electrical length equal to one quarter of the wavelength in the dielectric (50) of electromagnetic radiation of the predetermined frequency. The first end (51) of the tubular conductor (49) is directly electrically connected to the conductor sheath (47) and the second end (53) is connected to the conductor sheath via a capacitor (57). As a result, the physical length (1) of the tubular conductor (49) can be substantially shorter than its electrical length.
摘要:
Magnetic resonance apparatus includes an RF receiver coil system (13, 15) for detecting magnetic resonance signals generated in an object. This RF receiver coil system has a first (35) and a second receiver coil (37) which could be coupled to one another by mutual inductance. In order to compensate for the mutual inductance there is provided a decoupling network. This network has a first (49) and a second terminal (51) which are connected to a first end and a second end, respectively, of the first receiver coil (35), and also a third (53) and a fourth terminal (55) which are connected to a first end and a second end, respectively, of the second receiver coil (37). The decoupling network contains a first circuit (57) of variable impedance which interconnects the first and the third terminal (49, 53) and also a second circuit (59) of variable impedance which interconnects the second and the fourth terminal (51, 55). Each of the first and second circuits (57, 59) have at least one capacitor ( 63) and at least one coil (61), the value of the capacitor and/or the coil being variable so as to enable variation of the impedance of the circuits.