摘要:
A method of controlling an ultra-short pulse system is described comprising controlling an optical power within the ultra-short pulse system and control-system controlling a width of an optical pulse. In some embodiments, the method also comprises tuning a compressor by controlling a number of passes of the optical pulse through a Bragg grating to control the width of the optical pulse output from the compressor. In other embodiments, the method may comprise tuning a multi-pass stretcher by controlling a number of passes of the optical pulse through a loop of the multi-pass stretcher to control the width of the optical pulse output from the multi-pass stretcher. A method of controlling an ultra-short pulse system may also comprise accessing a control system from a remotely located command station, communicating status information from the control system to the command station, and communicating information from the command station to the control system.
摘要:
A chirped pulse amplification (CPA) system and method is described wherein the pulse is stretched using multiple passes through a Bragg grating or compressed using multiple passes through a Bragg grating. A switch may be used to control the number of passes through the Bragg grating, thus, tuning the compressed or the stretched pulse width. The pulse may be directed through an amplifier between the multiple passes through the Bragg grating to apply amplification to the stretched pulse multiple times. The Bragg grating may include a fiber Bragg grating, a volume Bragg grating, or a Bragg waveguide.
摘要:
A diamond-like carbon film is deposited on an insulating substrate using a solid carbon source evaporated by an electron beam so as to maintain the substrate temperature below about 150.degree. C. in a differentially evacuated chamber containing a selective etchant gas such as hydrogen. In orer to bombard the substrate with positively charged ions while preventing accumulation of a repulsive surface charge, a radio frequency (RF) electric field is applied to a rotating fixture holding the substrate. The differentially evacuated chamber maintains the atmospheric pressure around the solid carbon source at one end of the chamber at a sufficiently low pressure to prevent loss of electron beam energy and thereby enable vaporization of the carbon while maintaining the substrate at the other end of the chamber at a higher pressure which enables the RF electric field to excite an ion gas plasma around the substrate and thereby facilitate deposition of the diamond-like carbon film. In the preferred embodiment, the differentially evacuated chamber has a bypass manifold connected between the two ends of the chamber. A control system responding to pressure sensing apparatus inside the chamber governs the position of a butterfly valve in the bypass manifold to regulate the differential pressure in the chamber. In order to keep the substrate temperature below about 150.degree., the rotating fixture holding the substrate is water-cooled.