Abstract:
An apparatus includes multiple signal paths for optically converting an optical signal to multiples of the optical signal at different respective carrier frequencies for reducing interference between wireless transmissions of the multiples of the optical signal. Preferably, the converting includes a first modulator for modulating the optical signal into a first optical carrier and an initial first-order sideband signal with a frequency spacing twice that of the first optical carrier and a first interleaver for separating the first optical carrier and the initial first-order sideband signal. The converting also includes a second phase modulator for modulating the first optical carrier into a second optical carrier and a second first-order sideband signal with a frequency spacing twice that of the second optical carrier.
Abstract:
A method for generating a 400 Gb/s single channel optical signal from multiple modulated subchannels includes carving respective modulated subchannels into return-to-zero RZ modulated subchannels having non-overlapping peaks with intensity modulators having a duty cycle less than 50%, and combining the subchannels into a single channel signal aggregating the bit rate of each of the subchannels. The subchannels are combined with a flat top optical component for increased subsequent receiver sensitivity.
Abstract:
An optical transmitter includes a dividing optical coupler, a first optical modulator driven by an I component of a first signal and a I component of a second signal for modulating a lightwave, a DC bias of the first optical, a second optical modulator driven by a Q component of the first signal and a Q component of the second signal for modulating a lightwave, a DC bias of the second optical modulator, a phase shifter, and a combining optical coupler for combining the modulated lightwave from the first optical coupler and the phase shifted Q components of the first and second signals for generating a quadrature amplitude modulated signal.
Abstract:
Methods and systems for receiving an optical signal using cascaded frequency offset estimation. Coherently detecting an optical signal includes compensating for a coarse laser frequency offset between a transmitting laser and a local oscillator laser by determining a maximum phase error (MPE) in the optical signal, compensating for a residual laser frequency offset between the transmitting laser and the local oscillator laser, and decoding data stored in the optical signal.
Abstract:
An optical apparatus includes a quadrature phase shift keying modulator for generating a non-return-to-zero quadrature phase shift keyed NRZ-QPSK signal from a received lightwave, the modulator being driven by a radio frequency RF signal, an intensity modulator for carving the NRZ-QPSK signal to return-to-zero RZ pulses with a different duty cycle than that of the NRZ-QPSK, the intensity modulator being driven by a radio frequency RF clock signal to change the NRZ-QPSK to an RZ-QPSK signal, and an optical filter with a narrow band for filtering the signal from the intensity modulator to increase optical power that is useable by an optical digital coherent detection system.
Abstract:
A system and method to adjust the symbol constellation used to de-map a signal in an optical coherent communications system. A feedback de-mapper adjustment module is configured to compare average Error Vector Magnitude and Bit Error Ratio to a pre-defined table to determine when a constellation de-mapper mismatch occurs. The feedback de-mapper adjustment module then rotates the de-mapper constellation in order to compensate for phase drift.
Abstract:
A passive optical network (PON) device, system and method include an optical line terminal (OLT) receiver configured to receive multiple signals at different wavelengths simultaneously and enable multiple transmitters to operate at the same time during one upstream time slot. The optical line terminal employs Orthogonal Frequency Division Multiple Access (OFDMA) to transparently support a plurality of applications and enable dynamic bandwidth allocation among these applications where the bandwidth is allocated in two dimensional frequency and time space.
Abstract:
An optical system and method includes a source-free optical network unit coupled to an optical fiber for receiving an original carrier signal with downstream data over the optical fiber. The optical network unit includes a modulator configured to remodulate the original carrier signal with upstream data to produce an upstream data signal for transmission back down the optical fiber in a direction opposite to a direction in which that original carrier signal was received.
Abstract:
A method for generating a 400 Gb/s single channel optical signal from multiple modulated subchannels includes carving respective modulated subchannels into return-to-zero RZ modulated subchannels having non-overlapping peaks with intensity modulators having a duty cycle less than 50%, and combining the subchannels into a single channel signal aggregating the bit rate of each of the subchannels. The subchannels are combined with a flat top optical component for increased subsequent receiver sensitivity.
Abstract:
Data is transmitted by radio over fiber in a wavelength division multiplex optical transmission system. Data is transmitted over a single optical channel by directly modulating a single wavelength laser with a baseband data signal. Multiple single wavelength laser beams are multiplexed into a single multi-wavelength laser beam. All of the single optical channels are up-converted to RF frequencies by modulating the intensity of the multi-wavelength laser beam with an RF carrier.