摘要:
A location system for locating and determining the motion and velocity of a wireless device. The methods include direct inferences about whether a device is in motion versus static based on a statistical analysis of the variation of radio signal strengths over time. The system is trained according to a sparse set of identified locations from which signal strengths are measured. The system uses the signal properties of the identified locations to interpolate for a new location of the wireless device. The system uses a probabilistic graph where the identified locations of the floor plan, expected walking speeds of pedestrians, and independent inference of whether or not the device is in motion are used to determine the new location of the device.
摘要:
The claimed subject matter provides systems and/or methods that facilitate generating an inference about events that may not have yet been observed. Open-world modeling can be used to take a history of observation so as to understand trends over time in the revelation of previously unseen events, and to make inferences with subsets of data that new unseen events will be seen. Thus, inaccuracies associated with predictions generated from incomplete data sets can be mitigated. To yield such predictions, open-world submodels and closed-world submodels that do not allow for previously unseen events can be combined via a model mixture methodology, which fuses inferences from the open- and close-world models.
摘要:
The claimed subject matter provides systems and/or methods that facilitate inferring probability distributions over the destinations and/or routes of a user, from observations about context and partial trajectories of a trip. Destinations of a trip are based on at least one of a prior and a likelihood based at least in part on the received input data. The destination estimator component can use one or more of a personal destinations prior, time of day and day of week, a ground cover prior, driving efficiency associated with candidate locations, and a trip time likelihood to probabilistically predict the destination. In addition, data gathered from a population about the likelihood of visiting previously unvisited locations and the spatial configuration of such locations may be used to enhance the predictions of destinations and routes.
摘要:
Described are methods that utilize a geographic location technology (e.g., GPS) to determine user location data, and existing network-based websites (e.g., Internet websites) for searching and accessing data related to the location data such that the user context can be developed and stored. A location component is provided that determines location data of a wireless communications device of a user. A context component is provided that accesses context data based on the location data to define a context in which the device is located. Activities, goals, and overall context of a user can be inferred through statistical fusion of multiple sources of evidence. The context data is presented to the user via the wireless device such that the user can make decisions as to where to go, for example. User preferences can be accessed and applied to filter context data according to what the user desires to see and access.
摘要:
The present invention leverages changes in the sensed strength of radio signals at different locations to determine a device's location. In one instance of the present invention, inference procedures are used to process ambient commercial radio signals, to estimate a location or a probability distribution over the locations of a device. In another instance of the present invention, a system utilizes learning and inference methods that are applied to rank vector of signal strength vectors. Moving to such rank orderings leads to systems that bypass consideration of absolute signal strengths in location calculations. The present invention facilitates approximations for locating a device by providing a system that does not require a substantial number of available ambient signal strengths while still providing useful location inferences in determining locations.
摘要:
The claimed subject matter provides systems and/or methods that facilitate generating an inference about events that may not have yet been observed. Open-world modeling can be used to take a history of observation so as to understand trends over time in the revelation of previously unseen events, and to make inferences with subsets of data that new unseen events will be seen. Thus, inaccuracies associated with predictions generated from incomplete data sets can be mitigated. To yield such predictions, open-world submodels and closed-world submodels that do not allow for previously unseen events can be combined via a model mixture methodology, which fuses inferences from the open- and close-world models.
摘要:
Methods and systems that determine automatically the likelihood that a device is inside or outside of a structure or building. The system uses one or more sensors to detect ambient conditions, and make the determination. The inference can be used to save power or suppress services from certain devices, which are irrelevant, cannot be used effectively, or do not function under certain circumstances. In support thereof, the system includes one or more context sensors that measure parameters associated probabilistically with the context of a device. A context computing component considers one or more context sensors and facilitates determination of ideal actions, policies, and situations associated with the device. A service provided by the subject invention is the inference from one or more available observations the probability that the device is inside versus outside.
摘要:
The present invention employs approximate device locations determined from changes in the sensed strength of radio signals at different locations. In one instance of the invention, the approximate device locations are based on inference procedures that are used to process ambient commercial radio signals, to estimate a location or a probability distribution over the locations of a device. In another instance of the invention, approximate device locations derived from learning and inference methods that are applied to rank vector of signal strength vectors are utilized. Moving to such rank orderings leads to methods that bypass consideration of absolute signal strengths in location calculations. The invention utilizes approximations for a device location that is based on a method that does not require a substantial number of available ambient signal strengths while still providing useful location inferences in determining locations. Several location-centric services are supported, including receipt of location-specific information such as traffic reports, emergency information, transmission about device location, and time-sensitive promotions such as discounts offered by businesses for load balancing the provision of services.
摘要:
A suggestive mapping device may predict, suggest, and/or provide potential destinations to a user. Additionally, the device may store historical location data of the user, determine a travel vector of the user, and predict the destination of the user based at least in part on the historical location data and/or the travel vector. Further, the device may provide hands-free maps to destinations when the user does not know the address at least by receiving contextual data of the user and/or contextual data of the user's contacts. Such hands-free, suggestive mapping devices may facilitate more effective navigation.
摘要:
A suggestive mapping device may predict, suggest, and/or provide potential destinations to a user. Additionally, the device may store historical location data of the user, determine a travel vector of the user, and predict the destination of the user based at least in part on the historical location data and/or the travel vector. Further, the device may provide hands-free maps to destinations when the user does not know the address at least by receiving contextual data of the user and/or contextual data of the user's contacts. Such hands-free, suggestive mapping devices may facilitate more effective navigation.