Abstract:
A graphite film which is low in graphite dust generation can be produced by properly selecting acid dianhydride and diamine which constitute a polyimide film, which polyimide film is a raw material of the graphite film. Specifically, the graphite film which is low in graphite dust generation can be obtained if (1) the acid dianhydride is PMDA and the diamine has a molar ratio of ODA/PDA in a range of 100:0 to 80:20, or (2) the acid dianhydride has a molar ratio of PMDA/BPDA in a range of 80:20 to 50:50, and the diamine has a molar ratio of ODA/PDA in a range of 30:70 to 90:10.
Abstract:
In a method for producing a carbonaceous film in which a polymer film is wrapped around a core and is subjected to a heat treatment, material film surfaces during the carbonization step are prevented from fusion, whereby a long carbonaceous having a large area film is obtained.Fusion can be prevented by subjecting a polymer film to a heat treatment under a reduced pressure, and under a reduced pressure while allowing an inert gas to flow. The range of the pressure reduction is preferably −0.08 MPa to −0.01 kPa. It is preferred to carry out carbonization with the pressure reduced in the range of from −0.08 MPa to −0.01 kPa while allowing an inert gas to flow. In addition, the polymer film wrapped around the core is placed in an outer casing, and provided that a value derived by dividing (internal diameter of the outer casing−diameter of the core) by 2 is designated as “a” (mm), and a thickness of wrapping of the polymer film is designated as “b” (mm), a value (b/a) derived by dividing the “b” by the “a” is set to fall within the range of from 0.2 to 0.9.
Abstract:
There is provided a graphite composite film including a graphite film and a metal layer formed on a surface of the graphite film, in which peeling-off of the metal layer from the graphite film is suppressed. More specifically, the graphite composite film includes a graphite film and a metal layer formed on at least one side of the graphite film, wherein the graphite film has a plurality of through holes formed therein, a metal layer is formed also inside the through holes so as to be connected to the metal layer formed on a surface of the graphite film, the metal layer inside the through holes is formed continuously from the one side to an opposite side of the graphite film, and a distance between outer diameters of the through holes is 0.6 mm or less and a ratio of an area of metal inside the through holes to an area of the graphite composite film is 1.4% or more.
Abstract:
There is provided a graphite composite film including a graphite film and a metal layer formed on a surface of the graphite film, in which peeling-off of the metal layer from the graphite film is suppressed. More specifically, the graphite composite film includes a graphite film and a metal layer formed on at least one side of the graphite film, wherein the graphite film has a plurality of through holes formed therein, a metal layer is formed also inside the through holes so as to be connected to the metal layer formed on a surface of the graphite film, the metal layer inside the through holes is formed continuously from the one side to an opposite side of the graphite film, and a distance between outer diameters of the through holes is 0.6 mm or less and a ratio of an area of metal inside the through holes to an area of the graphite composite film is 1.4% or more.