摘要:
Provided is an interlayer for a thin electrolyte solid oxide cell, a thin electrolyte solid oxide cell including the same, and a method of forming the same. In various embodiments, functional elements (a fuel electrode, an electrolyte and a cathode) of the solid oxide cell are formed by means of a thin film process, and thus a nanostructure of the catalyst is not seriously lost due to agglomeration, different from a powder process. Thus, it is possible to accomplish catalyst activation according to a high specific surface area.
摘要:
In an embodiment of the present invention, a proton conductive oxide fuel cell comprising an electrode substrate, a proton conductive oxide electrolyte layer positioned on the electrode substrate, a proton conductive oxide reaction prevention layer positioned on the electrolyte layer, and a proton conductive oxide air electrode layer positioned on the reaction prevention layer, wherein the reaction prevention layer is composed of ABO3-δ structured perovskite proton conductive oxide, may be provided.
摘要:
The present disclosure provides a separator for a fuel cell, including a central part with a rectangular shape, and a surrounding part disposed to surround the central part, wherein the surrounding part includes an outlet manifold positioned at a pair of edges of the central part, which are opposed each other, and an inlet manifold positioned along a side of the central part to be adjacent to another edge except for the pair of edges at which the outlet manifold is positioned, and the central part includes a plurality of guide patterns that are spaced apart from each other to guide fluids introduced through the inlet manifold toward the outlet manifold.
摘要:
Disclosed is a metal separator for a solid oxide regenerative fuel cell coated with a conductive spinel oxide film. In the conductive spinel oxide film, yttrium is added to a manganese-cobalt spinel oxide to suppress growth of an insulating oxide film on the surface of the metal separator and volatilization of metal. In the conductive oxide film coated on the metal separator, yttrium is segregated at the grain boundaries of the spinel so that migration of oxygen through the grain boundaries can be suppressed. Therefore, the surface of the metal separator can be protected from exposure to the atmosphere and water vapor when the solid oxide regenerative fuel cell is operated at high temperature. In addition, poisoning of electrodes by metal volatilization from the surface of the metal separator and growth of an insulating oxide film on the surface of the metal separator can be prevented. Therefore, the stability of the solid oxide regenerative fuel cell stack can be markedly improved.