摘要:
To improve chemical resistance and heat resistance of an electromagnet core used for a liquid fuel injector. A core is formed by using a binder for a soft magnetic powder, wherein the binder is made of a polyimide resin having a molecular structure having a thermal and chemical stability. A volume ratio of the binder made of the polyimide resin to the soft magnetic powder is in a range of from 0.05 wt % to 1.0 wt %. Since the heat resistance and the chemical resistance of the core can be improved, the core can be used for a valve control electromagnet used for a liquid fuel injector and effectively operated when the core is attached to an engine.
摘要:
The present invention relates to composite soft magnetic materials having high strength and high specific resistance and a method of producing such materials by: heating mixture powder having a composition containing 0.05-1 wt % of polyimide resin powder having an average particle diameter of 1 to 100 μm, 0.002-0.1 wt % of fine amide-based wax powder having an average particle diameter of 1 to 20 μm, and the balance composed of insulating film-coated soft magnetic powder obtained by forming an insulating film on the surface of soft magnetic powder, at a temperature of 60 to 110° C.; filling the heated mixture powder in a mold which is heated at a temperature of 100 to 150° C.; compacting the heated mixture powder at a molding pressure of 700 to 1200 MPa to obtain a compact; and curing the obtained compact at a temperature of 225 to 300 ° C.
摘要:
The present invention provides R-T-B-based rare earth magnet particles comprising no expensive rare resources such as Dy and having an excellent coercive force which can be produced by HDDR treatment without any additional steps. The present invention relates to R-T-B-based rare earth magnet particles comprising crystal grains comprising a magnetic phase of R2T14B, and a grain boundary phase, in which the grain boundary phase has a composition comprising R in an amount of not less than 13.5 atom % and not more than 35.0 atom % and Al in an amount of not less than 1.0 atom % and not more than 7.0 atom %. The R-T-B-based rare earth magnet particles can be obtained by controlling heat treatment conditions in the DR step of the HDDR treatment in the course of subjecting a raw material alloy to the HDDR treatment.