Abstract:
A method of manufacturing a magnetic head is provided which can improve controlling a thickness of a gap layer. A coil base layer having at least a surface layer formed of one or two or more alloys selected from Au, Ru, and Rh is formed on a contact layer. Thereby, since a surface of the coil base layer is not oxidized due to air exposure, the contact layer is not oxidized. As such, the coil base layer protects the contact layer, so that it is not necessary to perform an etching process for removing an oxide layer, as in the related art. Therefore, it is possible to further improve controlling a thickness of a gap layer without cutting the gap layer by the etching process, as compared with the related art.
Abstract:
A main pole forming method is provided. The main pole forming method includes etching an exposed side face of a main pole layer, and the plated foundation film, thereby defining a recording track width. The method also includes etching the nonmagnetic insulating layer, and reattaching a material repelled from the nonmagnetic insulating layer to the side face of the main pole layer and a side face of the plated foundation film.
Abstract:
A thin film magnetic head is provided. The thin film magnetic head includes an upper coil wire group and a lower coil wire group. Two columns of coil contact groups that are formed on both end portions of individual coil wires of the upper coil wire group and the lower coil wire group and connect both end portions of the coil wires. An insulating resist layer buries a space between coil contacts of the coil contact groups. An inorganic insulating layer buries a space between the two columns of coil contact groups. The upper coil wire group, the lower coil wire group, and the two columns of coil contact groups form a thin film coil that applies a magnetic recording field to the magnetic material layer. The insulating resist layer and the inorganic insulating layer are located at the same lamination height as the two columns of coil contact groups.
Abstract:
A main magnetic pole layer is formed on an insulating layer flattened into a high-flatness surface, and a yoke layer having a large film thickness is formed under the main magnetic pole layer independently of the main magnetic pole. The main magnetic pole layer has a front end surface formed in a shape with a width size gradually increasing in a direction of track width as the front end surface departs farther away from an auxiliary magnetic pole layer. A perpendicular magnetic recording head can be provided which can suppress the occurrence of fringing in a recording pattern, and can form the main magnetic pole layer with high pattern accuracy, and can satisfactorily introduce a recording magnetic field to a fore end of the main magnetic pole layer.
Abstract:
A method of manufacturing a magnetic head is provided which can improve controlling a thickness of a gap layer. A coil base layer having at least a surface layer formed of one or two or more alloys selected from Au, Ru, and Rh is formed on a contact layer. Thereby, since a surface of the coil base layer is not oxidized due to air exposure, the contact layer is not oxidized. As such, the coil base layer protects the contact layer, so that it is not necessary to perform an etching process for removing an oxide layer, as in the related art. Therefore, it is possible to further improve controlling a thickness of a gap layer without cutting the gap layer by the etching process, as compared with the related art.
Abstract:
A thin-film magnetic head for perpendicular magnetic recording includes a nonmagnetic conductive elevation layer disposed under a main magnetic pole layer. The nonmagnetic conductive elevation layer and the main magnetic pole layer forms a trapezoidal shape converging toward an auxiliary magnetic pole layer, viewed from a face opposing a recording medium. The thin-film magnetic head for perpendicular magnetic recording includes an auxiliary magnetic pole layer, the main magnetic pole layer, and a nonmagnetic insulating layer disposed therebetween at a surface facing the recording medium.
Abstract:
An auxiliary magnetic section has a multilayer structure consisting of auxiliary magnetic layers and a non-magnetic layer and a first auxiliary magnetic layer is bonded to a main magnetic pole layer. This allows the auxiliary magnetic layers to have large induced magnetic anisotropy due to antiferromagnetic coupling in a track width direction. Since the first auxiliary magnetic layer is ferromagnetically coupled with the main magnetic pole layer, the magnetization of the main magnetic pole layer can be more properly directed in the track width direction as compared to known main magnetic pole layers and has low remanence. This leads to an increase in magnetic recording efficiency.
Abstract:
A first magnetic layer is formed on a first magnetic layer formation surface, and then a first material layer-forming layer is deposited on the first magnetic layer formation surface and on the sides and the top of the first magnetic layer and is etched to form first material layers so that the width dimension of each first material layer in the track width direction gradually decreases in the upward direction. Then, a second material layer is formed over the first material layer formation surface, the first material layers, and the first magnetic layer. Then, the first material layers, the second material layer, and the first magnetic layer are polished to expose the upper surface of the first magnetic layer and form the upper surfaces of the second material layer and the first magnetic layer as the same planarized surface.
Abstract:
A thin-film magnetic head includes a lower core layer; a recording core formed on the lower core layer and exposed at a face surface facing a recording medium, the recording core including a gap layer, an upper pole layer, and optionally, a lower pole layer; an upper core layer magnetically coupled to the upper pole layer; and a coil. A tip surface of the upper core layer at the face surface is set back from the face surface in the height direction, and the tip surface is an inclined surface or a curved surface in which the depth gradually increases from the track width direction. A method for fabricating a thin-film magnetic head is also disclosed.
Abstract:
A perpendicular magnetic recording head includes: an auxiliary pole layer; a main pole layer; a coil layer for providing a recording magnetic field to the auxiliary pole layer and the main pole layer; a nonmagnetic layer; and a connection layer magnetically coupled to the main pole layer. The nonmagnetic layer is formed on the main pole layer to maintain the main pole layer at a predetermined height during manufacture, allowing independent control of the track width Tw and the height of the main pole layer. A method for manufacturing the perpendicular magnetic recording head is also provided.