摘要:
An optical element can effectively correct misalignment of focused positions of optical spots and an optical spot pitch deviation with respect to image heights due to a refractive index distribution therein. The optical element includes a lens, which serves as an optical system in an optical scanner, is shaped in such a profile that misalignment of a focused position of the optical spot due to the refractive index distribution is corrected for image heights.
摘要:
A light source emitting a light flux; a coupling optical system couples the light flux from the light source to a subsequent optical system by transforming it into a parallel light flux, an approximately convergent light flux or an approximately divergent light flux; a light deflector reflects the light flux from the coupling optical system with a deflection reflective surface, and deflects it; a scanning and imaging optical system condenses the deflected light flux from the light deflector onto a surface to be scanned as a beam spot; and a correcting optical system is provided for self correcting shift of focal position of the beam spot on the surface to be scanned occurring due to environmental change or the like. The correcting optical system comprises at least one pair of a resin-made lens having an anamorphic surface having a negative power in each of main scanning direction and sub-scanning direction and a glass-made lens having an anamorphic surface having a positive power at least in sub-scanning direction, and is disposed between the coupling optical system and deflection reflective surface.
摘要:
In a multi-beam scanning device and method of the present invention, a semiconductor laser array having a plurality of light emitting parts emitting multiple laser beams is provided. A rotary deflector deflects the laser beams emitted by the light emitting parts of the semiconductor laser array. The deflected laser beams from the rotary deflector is focused onto a scanned surface to form a plurality of beam spots that are separated on the scanned surface in a sub-scanning direction, the scanned surface being scanned simultaneously with the plurality of beam spots in a main scanning direction by a rotation of the rotary deflector. The laser array is configured such that the light emitting parts are arrayed along a line that is at an inclination angle &phgr; to the sub-scanning direction, the inclination angle &phgr; measured in degrees and meeting the conditions 0≦&phgr;
摘要:
An optical scanning device employing a scanning imaging optical system that includes a first optical system configured to receive a light flux emitted from a light source, and a second optical system configured to condense the light flux to form a long linear image in a main scanning direction in a vicinity of a deflecting surface of an optical deflector. Also includes is a third optical system configured to condense a light flux deflected by the optical deflector toward a scanned surface to form an optical beam spot on the scanned surface so that a maximum value &Dgr;Mmax and a minimum value &Dgr;Mmin of an amount of change &Dgr;M in an image-surface curvature in the main scanning direction at each image height in an effective writing region with respect to a change &Dgr;T in an environmental temperature satisfy a condition of |(&Dgr;Mmax−&Dgr;Mmin)/&Dgr;T|
摘要:
An optical system includes three optical systems. The first has a coupling lens. The second includes a lens having a positive power in a vertical scanning direction and forms the light flux into a line image extending in the horizontal scanning direction on a deflector. The third includes a first lens having a positive power in the horizontal scanning direction, and a second lens having a positive power in the vertical scanning direction. Lateral magnification in the horizontal scanning direction is set larger than that in the vertical scanning direction. Temperature near the first lens is maintained higher than that near the second lens.
摘要:
An optical scanning device deflects one or a plurality of light flux(es) originating from a light source by an optical deflecting unit, gathers the deflected light flux(es) to cause it(them) to form a beam spot(s) on a surface to be scanned by a scanning and image-forming optical system, and, thus, performs optical scanning of the surface to be scanned. The scanning and image-forming optical system includes one or a plurality of optical component(s) including a lens. At least one surface of the lens included in the scanning and image-forming optical system is a sub-non-arc surface having an arc or non-arc shape in a main scanning plane, and a non-arc shape in a sub-scanning plane. The sub-non-arc surface is formed in a lens in which a diameter of a light flux passing through the scanning and image-forming optical system is largest in the sub-scanning plane’.
摘要:
An optical scanning apparatus includes a light source for outputting light, a first lens system arranged to receive the light output from the light source and to transmit a light flux therefrom, an optical deflector arranged to receive the light flux from the first lens system and having a deflecting reflective plane to deflect the light flux from a surface therefrom and a second lens system arranged to receive the light flux deflected from the optical deflector and to condense the deflected luminous flux into an optical beam spot on a surface to be scanned so as to form images having image heights, the luminous flux condensed by the second lens system into the optical beam spot including an optical beam waist. The second lens system has a scanning and image forming element including at least one surface including a plurality of portions each having a non-arc shape in a sub-scanning direction such that at least two of the non-arc shapes are different from each other and such that an effective writing width W and a width Fs of the sub-scanned image-surface curvature located within the effective writing width satisfies the condition Fs/W
摘要:
An optical scanning apparatus is constructed such that a light beam from a light source is formed into a linear image extending in a main scanning direction and is caused to be deflected at a constant velocity by virtue of a light deflecting system having a deflective reflecting surface which is located in a vicinity of an image formation position of the linear image. The deflected light beam is allowed to transmit through a scanning image formation lens so as to be converged into a beam spot on a surface to be scanned, thus causing the beam spot to scan the surface to be scanned at a constant speed. The scanning image formation lens is formed by more than two lens elements and has at least one special surface special surface in which a sub-scanning curvature changes in a main scanning direction according to a distance from an optical axis toward a periphery of the lens surface such that a line passing through centers of curvature in the sub scanning curvature is curved, and at least one of the special surfaces is formed so that the change of a sub-scanning curvature is non-symmetrical in the main scanning direction and the curvature has at least two or more than two extreme values.
摘要:
An object detector includes a projector including a light source having a two-dimensionally arranged plurality of light emitter groups, each of the light emitter groups having a plurality of light emitters, a light receiver which receives light emitted from the projector, and reflected by an object, and a light source driver which lights on and lights off each of the light emitter groups of the light source.
摘要:
A semiconductor laser driving apparatus for driving a semiconductor laser serving as a light source for optical scanning, the semiconductor laser driving apparatus includes: first and second switching elements that are each capable of switching energization of the semiconductor laser ON/OFF; a first pulse generation unit that intermittently outputs first driving pulses to the first switching element in a first time slot; and a second pulse generation unit that outputs a second driving pulse to the second switching element in a second time slot different from the first time slot.