摘要:
A display element includes a dielectric material layer 3, provided between a pair of substrates (substrates 1 and 2), which is made of a medium showing optical isotropy when no electric field is applied and showing optical anisotropy when an electric field is applied. Further, comb-shaped electrodes 4 and 5 are provided face to face on the substrate 1 so as to be positioned in a surface which faces the substrate 2. Furthermore, polarizing plates 6 and 7 are respectively provided on rear surfaces with respect to the counter surfaces of the substrates 1 and 2. Thus, it is possible to realize the display element which has a wide driving temperature range, a wide viewing angle property, and a high-speed response property.
摘要:
A display element has a arrangement that allows the pixel to have at least two domains in which the medium shows optical anisotropies of different directions when a force (for example, an electric field) is applied or when no force is applied. It is preferable that directions of the optical anisotropies occurred in the respective domains when the electric field is applied respectively have 45 degrees±10 degrees with absorption axes of polarizers, and that the directions of the optical anisotropies occurred in the respective domains when the electric field is applied make 90 degrees±20 degrees.
摘要:
Each of a pair of substrates respectively comprises an electrode and a rubbed alignment film on one surface, while the other surface is provided with a polarizer. The substrates are placed so that the surfaces provided with the alignment films are opposed to each other, and the area between the substrates is filled with a medium to form a material layer. Then, a medium made of a negative-type liquid crystalline compound sing a photopolymerizable monomer and a polymerization initiator is injected into the material layer held between the substrates. Further, ultra violet irradiation is performed with the medium exhibiting a liquid crystal phase, so that the photopolymerized monomer is polymerized, thus forming a polymer chain. In this manner, obtained is a display element, that causes change in degree of optical anisotropy in response to application of electric (external) field, which display element can be driven by a lower intensity electric (external) field.
摘要:
A display element has a arrangement that allows the pixel to have at least two domains in which the medium shows optical anisotropies of different directions when a force (for example, an electric field) is applied or when no force is applied. It is preferable that directions of the optical anisotropies occurred in the respective domains when the electric field is applied respectively have 45 degrees±10 degrees with absorption axes of polarizers, and that the directions of the optical anisotropies occurred in the respective domains when the electric field is applied make 90 degrees±20 degrees.
摘要:
A liquid crystal display device with an alignment film provided on at least one of a pair of substrates, sandwiching a liquid crystal layer, on the side facing the liquid crystal layer, in which the alignment film aligns liquid crystal molecules in the liquid crystal layer substantially vertical or horizontal when there is no voltage application, and a mask rubbing process is performed with at least a part of a hard mask adhered to the alignment film surface such that alignment control directions in regions of the alignment film are different from each other.
摘要:
A liquid crystal display device with an alignment film provided on at least one of a pair of substrates, sandwiching a liquid crystal layer, on the side facing the liquid crystal layer, in which the alignment film aligns liquid crystal molecules in the liquid crystal layer substantially vertical or horizontal when there is no voltage application, and a mask rubbing process is performed with at least a part of a hard mask adhered to the alignment film surface such that alignment control directions in regions of the alignment film are different from each other.
摘要:
A display element has an arrangement that allows the pixel to have at least two domains in which the medium shows optical anisotropies of different directions when a force (for example, an electric field) is applied or when no force is applied. It is preferable that directions of the optical anisotropies occurred in the respective domains when the electric field is applied respectively have 45 degrees±10 degrees with absorption axes of polarizers, and that the directions of the optical anisotropies occurred in the respective domains when the electric field is applied make 90 degrees±20 degrees.
摘要:
A display element of the present invention includes: a pair of substrates which are opposed to each other; and a substance layer, which is sandwiched between the substrates, exhibiting an optical isotropy when no electric field is applied, while exhibiting an optical anisotropy when an electric field is applied, and the display element performs display operation by applying an electric field to between the substrates. The substance layer includes a liquid crystalline medium exhibiting a nematic liquid crystal phase, and it is Δn×|Δ∈|≧1.9, where Δn is a refractive index anisotropy at 550 nm in a nematic phase of the liquid crystalline medium, and |Δ∈| is an absolute value of a dielectric anisotropy at 1 kHz in the nematic phase of the liquid crystalline medium. The display element and a display device including the display element realize a fast response speed and a low driving voltage and driving in a wide temperature range.
摘要:
An electrode is provided on one surface of each of a pair of substrates. On the other surface of each of the substrates, a polarizer is provided. The substrates are assembled together so that their surfaces on which the electrodes are formed face each other. Then, a medium is introduced between the substrates, to form a dielectric material layer. The medium is prepared by mixing a chiral agent in a negative type liquid crystalline compound.
摘要:
An electrode is provided on one surface of each of a pair of substrates. On the other surface of each of the substrates, a polarizer is provided. The substrates are assembled together so that their surfaces on which the electrodes are formed face each other. Then, a medium is introduced between the substrates, to form a dielectric material layer. The medium is prepared by mixing a chiral agent in a negative type liquid crystalline compound.