摘要:
A discharged fuel diluter includes: a retention region with a predetermined volume, into which a fuel discharged from a fuel cell is retained at the time of purging; a dilution region with a predetermined volume, through which air discharged from the fuel cell flows and at which the air is mixed with the fuel from the retention region to dilute the fuel; and a communicating portion, through which the fuel flows from the retention region to the dilution region.
摘要:
An exhaust gas disposal apparatus of a fuel cell of the present invention is equipped with a dilution vessel having a staying chamber for staying a hydrogen gas purged from a fuel cell and exhaust piping for passing a cathode off-gas, wherein any of the dilution vessel and the exhaust piping is provided with a hydrogen suction hole for sucking the hydrogen gas within the staying chamber and an off-gas supply hole for supplying the cathode off-gas within the exhaust piping into the dilution vessel, and wherein a flow adjustment measure for flow-adjusting the hydrogen gas, leading it into the hydrogen suction hole, and suppressing diffusion of the cathode off-gas supplied into the staying chamber from the off-gas supply hole is provided.
摘要:
The fuel cell system enabling shortening of the startup time of the system and preventing a pressure sensor from malfunctioning is provided. The fuel system 1 includes a fuel cell 10; a hydrogen tank 22 supplying hydrogen gas to the anode side of the fuel cell 10 through a hydrogen supply channel 43; an air pump 21 supplying air to the cathode side of the fuel cell 10 through an air supply channel 41; a bypass 46 connecting the air supply channel 41 with the hydrogen supply channel 43; an air induction valve 461 provided on the bypass 46, enabling control of the amount of gas flowing in the bypass 46; and a pressure sensor 51 having a diaphragm which is deformable by the pressure of the hydrogen gas, the pressure sensor detecting pressure of hydrogen gas by detecting displacement of the diaphragm.
摘要:
Hydrogen gas supplied to and then purged from a fuel cell is temporarily retained in a reservoir provided in an exhaust fuel diluter, and diluted before release into atmosphere. Cathode exhaust gas discharged from a cathode of the fuel cell is mixed to dilute the hydrogen gas, and air continues to be supplied to the cathode of the fuel cell for a specific period of time even after generation of electric power in the fuel cell is stopped, so that the hydrogen gas retained in the reservoir is continuously diluted with the cathode exhaust gas and released. Air for ventilation of the fuel cell may be used instead or in addition, to dilute and release the hydrogen gas retained in the reservoir after the generation of electric power in the fuel cell is stopped.
摘要:
An exhaust gas disposal apparatus of a fuel cell of the present invention is equipped with a dilution vessel having a staying chamber for staying a hydrogen gas purged from a fuel cell and exhaust piping for passing a cathode off-gas, wherein any of the dilution vessel and the exhaust piping is provided with a hydrogen suction hole for sucking the hydrogen gas within the staying chamber and an off-gas supply hole for supplying the cathode off-gas within the exhaust piping into the dilution vessel, and wherein a flow adjustment measure for flow-adjusting the hydrogen gas, leading it into the hydrogen suction hole, and suppressing diffusion of the cathode off-gas supplied into the staying chamber from the off-gas supply hole is provided.
摘要:
An oxygen-containing gas supply device of a fuel cell system is equipped with an oxygen-containing gas supply flow passage that communicates with an oxygen-containing gas inlet of a fuel cell. An oxygen-containing gas discharge flow passage communicates with an oxygen-containing gas outlet of the fuel cell. A compressor is disposed in the oxygen-containing gas supply flow passage and a supply flow passage sealing valve is disposed downstream from the compressor in the oxygen-containing gas supply flow passage. A discharge flow passage sealing valve is disposed in the oxygen-containing gas discharge flow passage, and a discharge fluid circulation flow passage that communicates with the oxygen-containing gas discharge flow passage is disposed at a location upstream from the discharge flow passage sealing valve, while also communicating with the oxygen-containing gas supply flow passage at a location upstream from the compressor.
摘要:
An ejector for a fuel cell system of the present invention includes a nozzle having a nozzle hole for discharging hydrogen supplied via an inlet port of an ejector body, a diffuser for mixing hydrogen discharged from the nozzle hole and hydrogen off-gas discharged and returned via a circulation passage from a fuel cell, a needle displacing in the axial direction by a driving force of a solenoid, and a bearing member held in a hollow portion of the nozzle, and having a through hole that movably supports the needle in the axial direction.
摘要:
An ejector and a fuel cell system using the ejector which can improve a control of an ejection pressure of a fluid.The ejector 50 includes a body 60, a nozzle 80, a needle 70, a diffuser 90 which sucks a second fluid by a negative pressure generated by a first fluid ejected from the nozzle 80, and a first, a second and a third diaphragms 100, 110, 120 which are movable in the axial direction against the needle 70. The first diaphragm 100 and the second diaphragm 110 have the same effective area, and an effective area of the third diaphragm 120 is different from those of the first diaphragm 100 and the second diaphragm 110.
摘要:
An ejector is provided with a first fluid chamber into which hydrogen gas is introduced; a rod-shaped needle; a nozzle exhausting hydrogen gas introduced into the first fluid chamber from an exhaust port; a second fluid chamber into which hydrogen off-gas is introduced; a diffuser provided at the exhaust port of the nozzle; and a third fluid chamber into which air is introduced. The first fluid chamber is provided between the second fluid chamber and the third fluid chamber. The first diaphragm 65 separates the first fluid chamber and the second fluid chamber and the second diaphragm separates the first chamber and the third fluid chamber. Then, the needle and the nozzle moves to approach each other by the pressure of air introduced into the third fluid chamber and isolate each other by the pressure of hydrogen off-gas introduced into the second fluid chamber.
摘要:
A fuel cell system mounted in a vehicle includes a fuel cell stack, a coolant supply mechanism, and a fuel gas supply mechanism. The coolant supply mechanism includes a coolant supply pipe and a coolant discharge pipe, provided on a front side in a traveling direction of the vehicle, relative to the fuel cell stack. The fuel gas supply mechanism includes a fuel gas supply pipe, provided on a rear side in the traveling direction, relative to the fuel cell stack.