Abstract:
Assuring recovery from failure of a storage server in a distributed column chunk data store of operably coupled storage servers, includes: partitioning a data table into chunks; implementing a distribution scheme with a specified level of redundancy for recovery of one or more failed servers among multiple storage servers; distributing the column chunks according to the distribution scheme; calculating column chunk parity; storing the calculated column chunk parity; managing metadata for the column chunk data store; and updating the metadata for distributing the column chunks among remaining storage servers upon receiving an indication to remove a storage serve.
Abstract:
Assuring recovery from failure of a storage server in a distributed column chunk data store of operably coupled storage servers, includes: partitioning a data table into chunks; implementing a distribution scheme with a specified level of redundancy for recovery of one or more failed servers among multiple storage servers; distributing the column chunks according to the distribution scheme; calculating column chunk parity; storing the calculated column chunk parity; managing metadata for the column chunk data store; and updating the metadata for distributing the column chunks among remaining storage servers upon receiving an indication to remove a storage serve.
Abstract:
An architecture for managing query friendly hierarchical values contains a data structure having node value entries for node values that make up the hierarchical values, hierarchical value entries for the hierarchical values expressed in terms of node value identifiers found in the node value entries, and hierarchy parent entries for parent-child pairs of hierarchy values. A node value entry contains a node value, a node hash value generated from the node value by a first hashing algorithm, and the node value identifier. The node hash value defines the node value entry in which the corresponding node value is stored. The hierarchical value entry contains a hierarchical value represented by the node value identifiers that correspond to the node values that make up the hierarchical value. The hierarchical value entry also contains a hierarchical value hash value derived from the node value identifier representation of the hierarchical value using a second hashing algorithm and a hierarchical value identifier. The hierarchical value hash defines the hierarchical value entry in which the corresponding hierarchical value is stored. A hierarchy parent entry contains the hierarchical value identifier for the parent hierarchical value and the hierarchical value identifier for the child hierarchical value. The hierarchy parent entry also contains a depth value representing the distance in nodes between the parent hierarchical value and the node in the child hierarchical value that is furthest from the parent.
Abstract:
An improved system and method for query processing in a distributed column chunk data store is provided. A distributed column chunk data store may be provided by multiple storage servers operably coupled to a network. A storage server provided may include a database engine for partitioning a data table into the column chunks for distributing across multiple storage servers, a storage shared memory for storing the column chunks during processing of semantic operations performed on the column chunks, and a storage services manager for striping column chunks of a partitioned data table across multiple storage servers. Query processing may be performed by storage servers or query processing servers operably coupled by a network to storage servers in the column chunk data store. To do so, a hierarchy of servers may be dynamically determined to process execution steps of a query transformed for distributed processing.
Abstract:
A method, system and computer-readable medium for analyzing interaction or usage data, such as for customers, is described. The interaction or usage data may be stored in log files and supplemented with data from other sources. Various data parsing information may be defined and used as part of the analysis, such as by using customer-specific information to identify various occurrences of interest. For example, when analyzing a customer's web site interaction data, the parser component can use data defining customer-specific types of web site events of interest. Such high-level types of occurrences can be specified in a variety of ways, such as by using a combination of a logical web site, one or more URIs corresponding to web pages, and/or one or more query strings. The data parsing information may also specify a mapping of actual web sites to one or more logical sites.
Abstract:
An improved system and method for a distributed column chunk data store is provided. A distributed column chunk data store may be provided by multiple storage servers operably coupled to a network. A storage server may include a database engine for partitioning a data table into the column chunks for distributing across multiple storage servers, a storage shared memory for storing the column chunks during processing of semantic operations performed on the column chunks, and a storage services manager for striping column chunks of a partitioned data table across multiple storage servers. Any data table may be flexibly partitioned into column chunks using one or more columns as a key with various partitioning methods. There may also be a storage policy for specifying how to partition a data table for distributing column chunks across multiple servers and for specifying a level of redundancy for recovery from failure of storage servers.
Abstract:
An improved system and method for compression in a distributed column chunk data store is provided. A distributed column chunk data store may be provided by multiple storage servers operably coupled to a network. A storage server provided may include a database engine for partitioning a data table into the column chunks for distributing across multiple storage servers, a storage shared memory for storing the column chunks during processing of semantic operations performed on the column chunks, and a storage services manager for striping column chunks of a partitioned data table across multiple storage servers. Any data table may be flexibly partitioned into column chunks using one or more columns with various partitioning methods. Domain specific compression may be applied to a column chunk to reduce storage requirements of column chunks and increase transmission speeds for sending column chunks between storage servers.
Abstract:
An improved system and method for query processing in a distributed column chunk data store is provided. A distributed column chunk data store may be provided by multiple storage servers operably coupled to a network. A storage server provided may include a database engine for partitioning a data table into the column chunks for distributing across multiple storage servers, a storage shared memory for storing the column chunks during processing of semantic operations performed on the column chunks, and a storage services manager for striping column chunks of a partitioned data table across multiple storage servers. Query processing may be performed by storage servers or query processing servers operably coupled by a network to storage servers in the column chunk data store. To do so, a hierarchy of servers may be dynamically determined to process execution steps of a query transformed for distributed processing.
Abstract:
An improved system and method for query processing in a distributed column chunk data store is provided. A distributed column chunk data store may be provided by multiple storage servers operably coupled to a network. A storage server provided may include a database engine for partitioning a data table into the column chunks for distributing across multiple storage servers, a storage shared memory for storing the column chunks during processing of semantic operations performed on the column chunks, and a storage services manager for striping column chunks of a partitioned data table across multiple storage servers. Query processing may be performed by storage servers or query processing servers operably coupled by a network to storage servers in the column chunk data store. To do so, a hierarchy of servers may be dynamically determined to process execution steps of a query transformed for distributed processing.
Abstract:
An improved system and method for query processing in a distributed column chunk data store is provided. A distributed column chunk data store may be provided by multiple storage servers operably coupled to a network. A storage server provided may include a database engine for partitioning a data table into the column chunks for distributing across multiple storage servers, a storage shared memory for storing the column chunks during processing of semantic operations performed on the column chunks, and a storage services manager for striping column chunks of a partitioned data table across multiple storage servers. Query processing may be performed by storage servers or query processing servers operably coupled by a network to storage servers in the column chunk data store. To do so, a hierarchy of servers may be dynamically determined to process execution steps of a query transformed for distributed processing.